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BY USING CIP-MOCCT METHOD

Takahiro KUDOH { Ryoji MATSUMOTO§ Kazunari SHIBATA {

Abstract

We present the results of astrophysical magnetohydrodynamic(MHD) simulations by using CIP
method and MOC-CT method. The magnetic induction equation is solved by MOC-CT and the
others by CIP. We compare our code to the Lax-Wendroff method which was popular among
astrophysical MHD simulations. Qur code has advantages;

(1) it can trace the contact discontinuity sharply,

(2) it keeps more stable even if the magnetic pressure is much greater than the gas pressure. We
present the 1.5D simulations of solar spicules, and the 1.5D and 2.5D simulations of jet formation

from accretion disks.

1 INTRODUCTION

MHD numerical simulation is the powerful method to
understand the magnetohydrodynamic phenomena in
the universe. MHD numerical simulations have been
performed for the solar jets and flares [1, 2, 3], proto-
stellar flares [4], jets from young stellar objects (YSO)
[5, 6, 7], jets from active galactic nuclei (AGN) [8],
the origin of the galactic hot plasma [9}, and so on.
However, numerical schemes of MHD have not been
established compared to the hydrodynamical schemes.
Although the modern high-resolution shock-capturing
methods and their application for gasdynamic prob-
lems can be found in Hirsh [10], the extension of these
schemes to equations of magnetohydrodynamics is not
straightforward. Several different approximate solvers
[11, 12, 13] applied to MHD equations are now at the
stage of investigation and comparison.

In this paper, we introduce more economical and
practical MHD scheme using CIP method [14, 15] and
MOC-CT method {16, 17). We belive that it is use-
ful to astrophysical MHD problems. In section 2, we
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introduce the numerical method and show test prob-
lems. Section 3 is devoted to the applications to astro-
physical problems, such as solar spicules and jets from
accretion disks. We compare our code with the Lax-
Wendroff method by using the results from the sim-
ulation of jets. In section 4, conclusion is described.
Brief introduction of the CIP and MOC-CT method
is given in Appendix.

2 NUMERICAL METHOD

2.1 Basic Equations

The basic equations we use are the ideal MHD equa-
tions in cgs units;
the equation of continuity;

op

gt—+v-Vp=—pV-v, (1)

the equation of motion
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the equation of energy
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the magnetic induction equations;

%—?:'Vx (v x B), (5)

where ¥ is the gravitational potential. Other variables
are summarized in Table 1.

UNITS FOR NORMALIZATION

Physical quantities Normalization unit

t Time ro/Vo
r  Length To

p  Density Po

p  Pressure ‘ poV¢
v  Velocity _ Vo

B Magnetic field VooVE
e Specific internal energy V¢

Table 1: Physical quantities and their normalization,
where rg, po and V, are typical length, density and
velocity, respectively.

2.2 Numerical Schemes

The numerical schemes we use are the CIP (Cu-
bic Interpolated Propagation) method {14, 15] and
the MOC-CT (Method of Characteristic-Constrained
Transport) method [16, 17].

The CIP method is applied to advection phase (the
left hand sides) of the equations (1)-(3) after solving
the right hand sides of the equations by using finite
difference method (non-advection phase). The numer-
ical viscosity is added to the pressure term as shown
in Yabe & Aoki [14], which is only sensitive to com-
pression.

The magnetic induction equations (5) are solved by
MOC-CT to calculate the magnetic field. The MOC-
CT is based on the constrained transport (CT) formal-
ism [18] for directly evolving the magnetic field while
maintaining V - B = 0 constraint. The method of
characteristics (MOC) for the Alfvén waves are used
in the CT formalism to allow stable treatment of dis-
continuous Alfvén waves.

The flow chart of our CIP-MOC-CT scheme are

summarized in Fig.1, and the formalisms of CIP, CT,
and MOC method are briefly introduced in Appendix.
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Fig.2: Magnetic shock tube results. The density
(p), x-component of velocity (v:),
y-component of velocity (vy), and
y-component of magnetic field (B, /v4r)
are shown.
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2.3 Test Problems
2.3.1 MHD shock tube

The MHD shock tube problem introduced by Brio &
Wau [19] is often used to compare one’s MHD scheme
with another’s.

The Cartesian coordinate is used. The number of
grid points is 800, and the grid size is taken to be
Az = 1. The specific heat ratio is assumed to be
4 = 2. As the initial condition, the density, pres-
sure, and x- and y- components of magnetic field in
the left state (x < 400) are chosen to be p = 1.0,
p = 1.0, B,/Var = 0.75, and B,/V4r = 1.0, re-
spectively, while in the right state (z > 400) they are
chosen to be p = 0.125, p = 0.1, B, /v/dw = 0.75, and
B,/ Vdr = —1.0. The result at ¢ = 80 of the density,
pressure, specific internal energy, x- and y- compo-
nents of velocities, and y-component of magnetic field

_ are shown in Fig.2. The solution consists of, from left

to right, a fast rarefaction wave (FR), an intermediate
shock (IS), a contact discontinuity with values on the
left (CD;), and right (CD,), a slow shock (SS), and
another fast rarefaction wave (FR). The intermediate
shock should be replaced by a rotational discontinu-
ity if the ideal MHD is exactly satisfied. Since nu-
merical resistivity depending on grid sizes or schemes
are inevitable in numerical simulations, intermediate
shocks appear at the location of rotational discontinu-
ities [20, 21]. _

Unlike the Sod shock tube, this MHD Riemann
problem has no known analytical solution. Brio &
Wu [19] present numerical solutions to this problem
by using a second order upwind Roe-type scheme.
Graphically, our results compare very favorably to re-
sults given by their scheme, and also by other schemes
[22, 16, 23, 24, 21]. It shows that the contact disconti-
nuity is described with fewer grid points than others.
The quantitative values obtained in the run are listed
in Table 2 together with values given by Stone et al.
[25]) and Brio & Wu [19].
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Fig.3: The propagation of a linear shear Alfvén
wave. The y-component of velocity (v,),
and y-component of magnetic field
(B,/V/4r) are shown.

2.3.2 Linear Alfvén wave

As the initial condition, y-components of velocity is
chosen to be v, = 0.001 (350 < z < 450), and
v, = 0.0 (z < 350, £ > 450). The density, pres-
sure, x-component of velocity, and x- and y- compo-
nents of magnetic field are p = 1.0, p = 1.0, v; =00,
B./V4x = 1.0, and B,/V/4r = 0.0, respectively. The
result at ¢t = 80 of y-component of velocity and y-
component of magnetic field are shown in Fig.3. The
MOC (method of characteristics) has a merit that it
allows the propagation of the discontinuous Alvén
waves without oscillations. If the magnetic induc-
tion equation and the stress terms in the momentum
equation are approximated with a simple finite cen-
tral difference, the linear discontinuous Alfvén wave
causes numerical oscillations. This is one of the rea-
sons we calculate the magnetic induction equation
with MOCCT.

3 APPLICATION TO ASTROPHYSICAL
PROBLEM

3.1 Simulations of Solar Spicules

Spicules are one of the dynamic phenomena in quiet
regions of the solar atmosphere [26]. They are jets em-
anating from supergranulation boundaries which trace
magnetic field lines. As a model of spicules, Suematsu
et al. [27] considered gasdynamic shocks (i.e., slow
mode MHD shocks) which propagate along a mag-
netic flux tube. They suggested that the elevated,
upward-moving chromospheric material is observed as
spicules. Hollweg, Jackson & Galloway (28] proposed
another idea. They studied the dynamical effects of
axisymmetric torsional motions propagating in an ax-
isymmetric vertical magnetic flux tube. Their numer-
ical simulations show that magnetohydrodynamic fast
shock which is produced in the chromosphere also im-
pel the transition region and underlying chromosphere
upward. We considered the situation almost same as
Hollweg et al. [28]. However, we imposed random
perturbations in the photosphere instead of sinusoidal
perturbations assumed by Hollweg et al. [28].

A shape of an open flux tube from the photosphere
is assumed to be fixed in a solar atmosphere (Fig.4),
although the torsional motion of the tube is allowed
(1.5-dimensional approximation) in the cylindrical co-
ordinate. Initially, the atmosphere is stratified in a
constant gravity of the solar surface (g = 2.74 x 10
cm s~2). The initial transition region is assumed at
~ 2250 km from the photosphere, where the temper-
ature suddenly changes from ~ 5000 K to ~ 10° K.
The strength of the magnetic field is assumed to be
~ 1600 Gauss in the photosphere and ~ 7.8 Gauss in
the corona. The specific heat ratio is assumed to be
v = 5/3. The random perturbation of torque is con-
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MHD SHock TUBE VALUES

Variable Left FR IS CD, CD, FR Right

p 10 0659 0823 0703 0245 0.116 0125
[0.664] [0.817) [0.701] [0.240] [0.116]
(0.676) (0.697)

P 10 0434 0693 0505 0505 0086 0.1
[0.443] [0.687] [0.509)  [0.509] [0.089]
(0.457) (0.516)

e 1.0 0658 0841 0718 206 0740 08

v, 0 0675 0483 0601 0601 -0.280 O
[0.662] [0.484] [0.597] [0.597] [-0.255]
(0.637) (0.599)

vy 0 -0252 -121 -158  -158  -0.197 0
[-0.248] [1.16] [-1.58] [-1.58] [-0.179]
(-0.233) (-1.58)

B,/Var 10 0561  -0.248 -0536 -0.536 -0.886 -1.0
[0.567) [0.179] [-0.536] [-0.536] [-0.896]
(0.585) (-0.534)

Table 2: Values in brackets and in parentheses are those given by Stone et al. [25] and by Brio & Wu [19],

respectively.

tinually imposed in the photosphere through a cal-
culation. The calculation is performed from t=0 to
t=25 minutes. Figure 5 shows the time variation of
the density structure along the flux tube. The plots at
various time are stacked with time increasing upward
in uniform increments of 7.2 second. The transition
region is lifted up by nonlinear torsional Alfven waves,
and fall down by the gravity. The maximum height
is about 5000 km in this case. The upward-moving
chromospheric material is observed as spicules.

The advantages of our scheme in this problem are
as follows. (1) The CIP method has an advantage
of keeping the sharp contact surface. The transition
region in the solar atmosphere is the contact surface
between the solar corona (~ 10° K) and the chromo-
sphere (~ 10* K). CIP is useful to distinguish between
the solar corona and the chromosphere in the calcu-
lations. (2) MOC allows us the stable treatment of
discontinuous Alfvén waves. In this problem, the ran-
dom torque in the photosphere produces discontinu-
ous Alfvén waves. We can detect the energy flux of
the Alfvén waves without numerical oscillations.

Our simulation shows the following results. If the
root mean square of the random motion is greater than

~ 1 km/s in the photosphere, 1) the transition region
is lifted up to more than ~ 5000 km (i.e., the spicule is
produced), 2) the energy flux enough for heating the
quiet corona (~ 3.0 x 10° erg/s/cm?) is transported
into the corona, and 3) non-thermal broadening of
emission lines in the corona is expected to be ~ 20
km/s. The reader is referred to Kudoh & Shibata [29)]
for more details.

3.2 Simulations of Astrophysical Jets

Astrophysical jets have been observed in young stellar
objects (YSOs), active galactic nuclei (AGNs), and
some X-ray binaries (XRBs) [30]. Although the ac-
celeration and collimation mechanisms of these jets
are still not well understood, these objects are be-
lieved to have accretion disks in their central regions.
One of the most promising models for jet formation

* is magnetic acceleration from accretion disks [31, 5, 6]

(Fig.6). We here present the results of 1.5D and 2.5D
MHD simulations of jet formation by magnetic accre-
tion disks. -

3.2.1 1.5D Simulations of Jets

We first show time-dependent 1-dimensional axisym-
metric (1.5D) MHD simulations of astrophysical jets
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Fig.4: Shape of the flux tube we assumed in the
simulations of spicules. The transition
region is initially at z = 2250 km from the
photosphere. -

which are magnetically driven from Keplerian disks,
assuming a point-mass gravitational potential at the
origin.

We study the initial value problem, in which the
Keplerian disk threaded by the poloidal magnetic field
suddenly begins to rotate and twists the field line, gen-
erating "nonsteady jets” by the J x B force. We have
a symmetrical boundary condition at equatorial plane
and a free boundary condition at top of the computing
region. There are two nondimensional parameters:

1% Vio

Ep = :rVa_:%o’ Emg =73 (6)

where V,o = (7po/p0)!/?, Vao = Bo/(4mpo)'/?, Vio =
(GM/ro)'/2, py is the initial pressure at the footpoint
of the jet, G is the gravitational constant, and M is
the mass of a central object. The specific heat ratio is
assumed to be v =1.2.

Figure 7a shows the time evolution of the velocity
parallel to the poloidal magnetic field v,. We take the
cylindrical coordinate (r, ¢, z) and it is normalized by
ro which is the radius of the footpoint of the field line
at the equatorial plane. This figure shows that there
are two velocity peaks. The leading one is the front of
the nonlinear torsional Alfvén wave (coronal jet). The
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Fig.5: Time variation of density distribution in a

spicule. The plots at various time are
stacked with time increasing upward in
uniform increments of 7.2 second.

Fig.6: Schematic picture of the magnetically

driven jet from an accretion disk. The
view of the cross-section on the poloidal
plane (left pannel) and the three
dimensional view including toroidal
component of the magnetic field (right
pannel).
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Fig.7: The time variation of (a) the poloidal
velocity, and (b) the density of the 1.5D
MHD jet from an accretion disk. -The
velocities are normalized by the Keplerian
velocity in the disk. The density is
normalized by the initial value at the
equatorial plane. The spatial axis z/rg is
taken as a logarithmic scale. The
parameters are Eqg = 1.2 x 1074, and
Eyn =6.0x 1073

following peak corresponds to the jet which is directly
ejected from the disk (disk jet). The density evolu-
tion (Fig.7b) shows that the mass which is initially in
the disk is ejected to the corona, and its front corre-
sponds to the second peak of the velocity. The velocity
of the jet is ~ 2.5Viko. These two types of jets are the
same as those appeared in 2.5-dimensional simulation
of Shibata & Uchida [6]. Figure 8 shows the snap-
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Fig.8: (a) The snapshot (t/to = 45) of the
density of the 1.5D MHD jet. The
parameters are the same as that of Fig.7
(b) The close up view including slow and
fast shocks. The spatial axis (z/ro) is
taken as a linear scale. (c)The close up
view of the slow shock. We can see the
reverse slow shock and the contact
discontinuity.

shot (t/to = 45) of the density distribution along the
jet. Figure 8b and 8c are the close up view of Figure
8a. Fast shock, contact discontinuity, slow shock and
reverse slow shock are identified.

One of the most important finding in this study
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lines, and poloidal velocity of the 2.5D MHD
jet from an accretion disk, calculated with
CIP-MOCCT method. Time t = 2w ~ 6.28
corresponds to one Keplerian orbit at
(r,z) = (1,0), where length scales are
normalized by ro where the initial disk
density is maximum. Arrows show the
poloidal velocity vectors normalized by the
Keplerian velocity at (r,2z) = (1,0). The
parameters are Eng = (Vao/ Vio)?
=5.0x 10~* and Ey, = (Vao/Vio)?/v = 0.05,
where Vo, Vio, and Vio are initial Alfvén
velocity, initial sound velocity, and Keplerian
- velocity at (r,z) = (1,0), respectively. The
grid size is 0.01. The contour step width is
0.25 in logarithmic scale for density, and 0.15
for temperature.

is that even when the initial poloidal magnetic field
is very weak in the disk (e.g., Emg ~ 107%), a jet
with a speed of Keplerian velocity is produced by the
effect of magnetic pressure force in the toroidal fields
generated from the poloidal fields by the rotation of
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Fig.10: Density, poloidal magnetic field lines, and
poloidal velocity, of the 2.5D MHD jet,
calculated with modified Lax-Wendroff
method. The parameters are the same as
those of Fig.9.

the disk. The reader is referred to Kudoh & Shibata
[32] for more details.

3.2.2 2.5D Simulations of Jets

To investigate the effect of accretion flows in disks, we
have performed 2-dimensional axisymmetric (2.5D)
MHD simulations of jet formation by magnetic accre-
tion disks in which both ejection and accretion of disk
plasma are included self-consistently.

As an initial condition, we assume an equilibrium
disk rotating in a central point mass gravitational po-
tential [8]. Exact solutions for these conditions can be
obtained under the simplifying assumptions for the
distribution of angular momentum and pressure [33].
The mass distribution outside the disk is assumed to
be that of uniformly-high temperature corona in hy-
drostatic equilibrium without rotation. For simplicity,
the initial magnetic field is assumed to be uniform and
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parallel to the axis of rotation. A mirror symmetri-
cal boundary condition is assumed on the equatorial
plane (z = 0) and the axis (r = 0). The side and top
surfaces are free boundaries. In order to avoid a sin-
gularity at the origin, the region aroundr =z=01is
treated by softening the gravitational potential. Two
nondimensional parameters (Ey,, Emg) are defined as
the same manner as those of the 1.5D simulation, ex-
cept that it is determined at (r,z) = (1,0). We set
Ey, = 0.05 in the simulations. The specific heat ratio
is assumed to be v = 5/3.

I ]
] ]
' viiBy e
; 1,2y j+1/2Ye
] ]
(] ]
! ple Vy Ay ()
i ek S T '
1 1] X .
] 1 '
—_ ’ j-1/2 1Ay 5 ()
] ] '
t ]
] 1

i-1/2 i i+1/2

Xb Xoeo
B S
______ AXa ()

Fig.11: Centering of variables. The density and
internal energy density are zone centered,
while x- and y- components of velocity
and magnetic field are face centered.

Fig.9 shows the time evolution of density, temper-
ature, poloidal magnetic field lines, and poloidal ve-
locity. The initial field strength is Emg = 5.0 x 107*.
Because the magnetic field in the disk is weak, the sur-
face layer of the disk falls faster than the equatorial
part [8]. Finally, the material on the disk surface is
ejected as a jet by the Lorentz force of the magnetic
field.

The result of the numerical simulation shows that
the velocity of the jet is of order of the Keplerian ve-
locity of the disk even if the initial magnetic energy is
much weaker than the gravitational energy in the disk.
This is consistent with the 1.5D simulation shown in
the previous section and semi analytical calculation
studied by Kudoh & Shibata [34]. The velocities of
astrophysical jets in YSOs, AGNs, and XRBs are of
order of the escape velocities of the central objects.
Our conclusion is that astrophysical jets are ejected

from accretion disks which are very close to central
stars. The reader is referred to Kudoh, Matsumoto &
Shibata, [35] for more details.

3.2.3 Comparison with Lax-Wendroff scheme

We compare the results for a magnetically driven jet
from an accretion disk using the CIP-MOCCT method
and a modified Lax-Wendroff method [36, 37] which

" was popular among astrophysical MHD simulations.

Fig.10 shows the time evolution of density, temper-
ature, poloidal magnetic field lines, and poloidal ve-
locity, which are calculated with the modified Lax-
Wendroff scheme. The computational time using the
Lax-Wendroff method is about 1.5-2.0 times shorter
than that of the CIP-MOCCT method. (When the
number of grid points is 345 x 450, the CPU time
of CIP-MOCCT method using 1-CPU of VPP300 in
National Astronomical Observatory is 10 minutes and
44 seconds with 1000 steps. Both Vectorization and
Parallelization are not difficult in our scheme.) Fig-
ures 9 and 10 show that (1) the global time evolu-
tion with both methods shows good agreement, (2)
the contact surface is sharply traced with the CIP-
MOCCT method, and (3) numerical oscillations are
not prominent when the CIP-MOCCT scheme is used.

In the case of the modified Lax-Wendroff scheme,
numerical oscillations appear especially in the jets and
in the disk, where the magnetic pressure is larger
than the gas pressure (gas pressure/magnetic pressure
< 1072). This is caused by the large toroidal compo-
nent of the magnetic field (By) generated by the differ-
ential rotation of the disk. Since the equation of total
energy is used in the modified Lax-Wendroff scheme,
the gas pressure is calculated from the difference be-
tween the total energy and the magnetic energy. If
the total energy is dominated by the magnetic energy,
small numerical oscillations cause the negative pres-
sure which should be eliminated or corrected by some
way in order to continue the calculation. In the CIP-
MOCCT scheme, we can use the equation of the inter-
nal energy instead of the total energy. It avoids this
kind of error, and keeps the magnetic energy domi-
nated region without oscillations. In the astrophysical
situation, the magnetic pressure often becomes grater
than the gas pressure because of the gravitational en-
ergy or radiative cooling. Our scheme is suitable for
the situation.

On the other hand, the use of the equation of the
internal energy does not guarantee the total energy
conservation. In the calculations of the CIP-MOCCT
scheme, the error of the total energy is about 5%,
which is slightly larger than that of the modified Lax-
Wendroff scheme (< 3%).

Many results of the CIP-MOCCT scheme show that
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the density sometimes becomes very small or negative
on the contact surface, in the stagnation region, or
in the current sheet. When the density becomes very
small, the Alfvén velocity becomes very large and the
calculation is stopped by very small time steps. Some-
times, the numerical explosion takes place when the
temperature suddenly rises in the grid points where
the density becomes very small. Although we have
not clarified the reason of this numerical instability,
it may be caused by the non-monotonicity of the CIP
scheme, the artificial viscosity which is only sensitive
to the compression [14], the use of 1D directionally
split in MOC method [17], and the mixture of them.
We hope that the recent improvements of the schemes
(38, 39, 40] may solve this problem.

4 CONCLUSION

We summarize the advantages and the disadvantages
of our scheme.

The advantages of our CIP-MOCCT scheme;

e It can trace the contact discontinuity sharply.

o It keeps stable even if the magnetic pressure is much
greater than the gas pressure. '

o It guarantees V - B = 0 within a finite differential
form. i

o It allows us the stable treatment of the discontinu-
ous Alfvén waves.

The disadvantages of our CIP-MOCCT scheme;

e The total energy conservation is not so good com-
pared with the schemes in which the equations of
total energy is used.

e The density sometimes becomes very small or nega-
tive on the contact surface, in the stagnation region,
or in the current sheet.

Although there are some disadvantages, we conclude
that the CIP-MOCCT scheme is practically useful to
study astrophysics.
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APPENDIX

We will make a brief introduction of the CIP, CT, and
MOC formalism in the Appendix.

4.1 CIP formalism [15]
Consider a 2-dimensional hyperbolic equation,

of .f 3f _
ot F U as Ty T 0
where f is representative for p, vz, vy, and e, and S is

the the source term, such as pressure gradient, gravity,
Lorentz force, and so on.

The spatial derivative of equation (7) gives,

280) 10, 2%y eu, 2%
05" oow oft

~ 9z 0z 0z Oy oz

aJ ,0f of

(—y)+ 523y ) ”6y(5§)
o5 ofow oo,

“ 8y Ordy 8yady

These are three equations for three values f, (8f/0z),
and (3f/8y), and are split into two phases; the non-
advection phase (right hand side of the equations) and
the advection phase (left hand side of the equations).
The CIP scheme is applied to the advection phases
of the equations after the non-advection phases are
solved with a finite-difference approach.

Non-advection phase

The quantities f, (8f/dz), and (8f/dy) are advanced
according to

e = [+ SiAt (10)
( )n+a - ( ) ’;—t?] n-*i?j t+1,1 + fs— ,J)
AZH.] + Az;
(3f n (V2 ~Vae-1,5)A
Az + Az

_(¥yn (Vp(i41,5) ~ Yyi-1,9)) A

6 Az; + Az, (11)

( )n+a - (af n o4 (f'::::l - :x;—al -f::i"l'l + fi',l.‘i—l)
) Ay,.n + Ay,-
(af o (Waagen) ~ yAt
az 4

8 (v Ui i) — U
- (== f)i.J y(i,j+1)

z(i,j—l
Ay, + ij—l

Y1)t (12)
ij + ij—l

where Az; = Tip1 — T, Ayj; = Yj1 —Yi» n+a
on f means the time after one time step in the non-
advection phase In the differential forms of (35/9z)
and (BS/ay), 7] is replaced by ( u+a - f;J)/At by
using equation (10). We need imtlal conditions of
(0f/0z) and (8f /dy) as well as f in the scheme.

For example, the finite differential form of the x-
component of the momentum equation (2) in the 2D
Cartesian coordinate shown in Figure 11,

”:Et:-l/z,j) = Vz(iy1/2,5) T Si+1/2,5 At (13)

1 P(i+1,5) — P(i.j)
P(i+1/2,5) A37«»(5)
Y, — Y6,)

AfL‘a(,')
_ Byiy1/2.4) Byi4rh) — By(ig)
Ap(ir1/2,5) Azq(i)
_ Byg+1/2)
47fP(i+1/2,j)

Sir/2j =~

B;(i+1/2,j+1/2) -

2(i+1/2,5+1/2)
Ayy() '

(14

where piyi/24) = [PGg) + G /2 Byis) =
[ByGi.j+1/2) + Byii,i—1/2)l/2, By(ir1/2.5) = [By(ii+1/2)

+By(i+1,5+1/2) T Byi.i-1/2) +By(i11,j-1/2)]/4, and *
denotes the value that is calculated with MOC shown
later.
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Advection phase

In the the advection phase, the advanced quantities f,
(0f/0z), and (8f/3y) are explicitly written as

oY = [(AL €+ A2; jn+ A3y )+ A4y .,n+( )'“"‘]»,c

(A5 0+ A6 £+ AT, )+ £>"+“1n+f"+“
(15)

a_f-)n-{—l —

(am (3A1.',jf + 2A2,"j17 + 2A3;,j)€

+ (Adi, + A6 E)E + (g—i-)"ﬂ (16)

(%;—)”+1 = (3A5."j1’} + 2A6,‘,j€ + 2A7i,j)f
0
+ (At + 4206+ (D (D)
where £ = —v[At, n = —vpAt,

Alij =[-2di + 5 (f.'fi“, M az)/(Az})  (18)
6d.

A2 ;= [A8;; — a Az ]/(A22Ay]) (19)
A3, = (3 — D (F5 + 207 AR/ (Azd)  (20)
Adyj = [~A8i; + %’A + %dlAy,]/(Aa:,Ay,) (21)
A5 = (-2 + 2 (FF8 + SO/ 8) - 22)
46:5 = (48, - %—'Aw]/(AwiAy?) (23)
ATy = (8 — S(TFS + 220 A 28)
A8~,,- = e - i - A+ AN (25)

= SR — S5, and d; = f7F - 0. (26)

The above equations are derived for v, < 0, v, < 0.
We must change: i +1 = 7 — 1, and Az; = —Az;,
forv, > 0,and j+1=>j—1, and Ay; = —Ay;_; for
1y < 0.

4.2 CT formalism [18]

The constrained transport (CT) method maintain
V - B = 0 constraint. The essential point is the
choice of the grid points for magnetic field and electro-
motive force. For simplicity, we will show the case
of 2D Cartesian (z,y) coordinate. In CT formal-
ism, electro-motive force €, which is defined by € =

—(vzBy — vyB:), is located at the corner of the grid
points (Fig.11). From the magnetic induction equa-
tion (5), x- and y- components of the equation are
0B, _ Oe and 0By _ Oe
ot~ 8y’ ot ~ oz’

respectively. The components of magnetic field are
directly advanced by the the finite difference;

At [Bz(1.+l/2.,1) i B:("+1/2,J')]
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alt
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Equation ({(27) XAya(ji At sh
X At shows
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1
[Br(t+l/2,1) B:(i+l/2,1') - B:(t—l/z,j)
+ Bgio1/2,)|A%0) + [33&141/2) = Byii+1/2)
vi-1/2) ~ Bytii-1/2)A%a() = 0. (31)
Therefore,
+1 +1 +1 +1
Bitij2g) ~ Bigipg | BiGinm = Bys-y
Az Ayag
_ Bigrijag ~ Biig | Braavi = By
Az, Aya()

(32)
The equation (32) shows that the finite differential
form of V - B = 0 is satisfied if it is satisfied in the
initial condition. The CT formalism guarantee V-B =
0 within finite difference.

4.3 MOC formalism [16]

The MOC allows us the stable treatment of the dis-
continuous Alfvén waves (see Fig.3).
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The Electro Motive Force

The electro motive force in the right hand side of equa-
tions (27)-(30) is calculated with MOG;

e = —(v; By — v, B;) (33)

where vz, By, v, and B} are calculated from the
method of characteristic (MOC) by considering one-
dimensional incompressible fluid.

In one-dimensional incompressible fluid in x-
direction, the y-component of the momentum equa-
tion and the y-component of the induction equation
are expressed as

oo, _ B, 0B, 0

8t  4mwp Oz Oz (vavy), (34)
8B, . Ov, O

5 = D=5y ~ 5z VB (35)

respectively. By multiplying equation (35) by
(v/4p)~'/? and then adding them,

2+ et =)l = ) =0 (30)

and subtracting them,

=0. (37)

7] B, .90 B,
[a + (v — m)b—x’](vy + m)

Equations (36) and (37) are the characteristic equa-
tions for Alfvén waves propagating forward and back-

ward, respectively. The finite differential forms of .

equations of (36) and (37) along the characteristics
are

(v;—v;)—\/-{_ﬂ?(B;—B;)ﬂ, (38)
L_(B;-B;)=0, (39

v =) + ——
( v Yy ) / A p_
respectively, where + and — denote the value at the

footpoints of each characteristic. These two equations
for the v; and By are solved directly, yielding,

+ ~ - _ g+ -
o = vy 4mp* + vy \/4np Bf + B,

v Varpt + \f4np~ '

(40)

Bt — —v} + v, + B} [/Anpt + B, [/4mp~ (41)
v 1/\/Amp* + 1/\/4mp~ '

We set pt = p?, and p~ = p}}; for simplicity. The
quantities v}, vy, By, and B are calculated as time
averaged values obtained by using upwind interpola-
tion at time level n, such as donor cell, van Leer [41]
or piecewise parabolic advection [42]. The CIP can be
used for this interpolation. We used van Leer interpo-
lation in our code. For example, v;'(i +1/2) is calculated
in the following;
Vi + 3(Azi— G}, /zAt)%l(i)
if Cfyp>0
Uleeny — SATHCH p OO F
if Cyp <0,

(42)

+
v, =

where Cf, , = [vz — Bz/(v&7p)}i+1/2 is the charac-
teristic speed of the Alfvén wave propagating forward
and,

2Avy(i—1/2)AVy(i+1/2)
Avy(i-1/2)HBVy(i41/2)

dvy .
Py if  Avy-1/2) Avyi+1/2) > 0
0 otherwise,
(43)
where Avy(iy1/2) = (v;'(,- 1))~ v;'(,.))/Aa:;. When we
evaluate CF we used velocity which has been ad-

i+1/2
vanced in non-advection phase (v2*?) in order to get
more favorable results in MHD shock tube.

The quantities v and B} are also calculated in a
similar way by solving characteristic equations in a
directionally split fashion.

The Stress Term in the Equation of Motion
The MOC method is used to evaluate magnetic field
in the stress term of the equation of motion. The
finite differential form of the equation (34) in the non-
advection phase is
+ . » *
vyt ~ %@ _ _ Bz By ~ B

At 4wp Az

(44)

where v™t% is the updated velocity in the non-
advection phase, and B} are the magnetic field that
is calculated with MO&. When we calculate By in
the stress term, the characteristic speed in a La-
grangian frame C* = FB,/\/4wp is used instead of
C* = v, ¥ B,/V34xp, because the advection of the
equation (34) is calculated with CIP.

In the 2D case, the equation (14) shows that the
x-component of the equation of motion has the stress
terms in Lorentz force. This is also calculated with
MOC. The magnetic pressure terms were calculated
with the finite difference of the centered spatial aver-
age of magnetic field.



