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Plasmoid-induced-reconnection and fractal reconnection
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As a key to undertanding the basic mechanism for fast reconnection in solar flares,plasmoid-induced-
reconnectionand fractal reconnectionare proposed and examined. We first briefly summarize recent solar ob-
servations that give us hints on the role of plasmoid (flux rope) ejections in flare energy release. We then discuss
the plasmoid-induced-reconnection model, which is an extention of the classical two-ribbon-flare model which
we refer to as the CSHKP model. An essential ingredient of the new model is the formation and ejection of a
plasmoid which play an essential role in the storage of magnetic energy (by inhibiting reconnection) and the in-
duction of a strong inflow into reconnection region. Using a simple analytical model, we show that the plasmoid
ejection and acceleration are closely coupled with the reconnection process, leading to anonlinear instabilityfor
the whole dynamics that determines the macroscopic reconnection rate uniquely. Next we show that the current
sheet tends to have afractal structurevia the following process path: tearing⇒ sheet thinning⇒ Sweet-Parker
sheet⇒ secondary tearing⇒ further sheet thinning⇒ · · · . These processes occur repeatedly at smaller scales
until a microscopic plasma scale (either the ion Larmor radius or the ion inertial length) is reached where anomalous
resistivity or collisionless reconnection can occur. The current sheet eventually has a fractal structure with many
plasmoids (magnetic islands) of different sizes. When these plasmoids are ejected out of the current sheets, fast
reconnection occurs at various different scales in a highly time dependent manner. Finally, a scenario is presented
for fast reconnection in the solar corona on the basis of aboveplasmoid-induced-reconnection in a fractal current
sheet.

1. Introduction
Recent numerical simulations (e.g., Ugai, 1986, 1992;

Scholer, 1989; Biskamp, 1986; Yanet al., 1992; Yokoyama
and Shibata, 1994; Magara and Shibata, 1999; Tanumaet
al., 1999, 2001) have revealed that if the resistivity is spa-
tially uniform, fast, steady-state Petscheck-type reconnec-
tion does not occur but instead slow, Sweet-Parker-type re-
connection occurs. This holds especially when a strong in-
flow is imposed at the external boundary, and the only way
so far found to achieve a steady-state Petschek configura-
tion is to have alocalized resistivity. The so called anoma-
lous resistivity satisfies this condition. However, there are a
number of questions about it.

1. In order to produce anomalous resistivity, the current
sheet thickness must be as small as the ion Larmor radius1

r L ,ion = mi vthc

eB
= 100

(
B

10 G

)−1 (
T

106 K

)1/2

cm (1)

or the ion inertial length

l in,ion = c/ωp,i = 300
( n

1010 cm−3

)−1/2
cm, (2)

1Although the physics of anomalous resistivity has not yet been fully
understood, it is known that anomalous resistivity occurs due to plasma
turbulence which is produced by the microscopic plasma instability, such as
the lower hybrid drift instability, the electrostatic ion cyclotron instability,
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both of which are of order of 1 m in thesolar corona. Since
the size of solar flares is typically 104 km, there is a large
gap between the flare size and the necessary microscopic
scale to produce anomalous resistivity. How can such an
enormous gap between macroscopic and microscopic scales
be reconciled in real flares?

2. Even if the anomalous resistivity (or localized resistiv-
ity) is realized, what determines the reconnection rate?

Based on recent observations of solar flares and numer-
ical simulations, we try to give possible answers to above
questions. We argue that the key physics needed to answer
the above questions is the global coupling between plasmoid
(flux rope) ejection and reconnection process. Since this
coupling is scale free, it can occur on any scale, constitut-
ing a fractal reconnection process, which couples the macro-
and micro-scales.

2. Solar Observations: Flares and Plasmoid Ejec-
tions

Yohkoh has revealed numerous indications of magnetic
reconnection in solar flares, such as cusps, arcades, loop
top hard X-ray (HXR) sources, X-ray jets, and so on (e.g.,
Tsunetaet al., 1992a; Hanaokaet al., 1994; Masudaet al.,

and the ion sound instability (e.g., Treumann and Baumjohann, 1997). In
the case of the lower hybrid drift instability, the threshold of the instabil-
ity is vd > vion,th wherevd = j/(nee) is the electron-ion drift veloc-
ity, and vion,th = (kT/mi )

1/2 is the ion thermal speed. This equation
becomes equivalent tod < r L ,ion if we consider the pressure balance
p = 2nkT � B2/8π between inside and outside of the current sheet,
whered is the thickness of the current sheet.
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1994; Forbes and Acton, 1996; Shibata, 1999). Further-
more, as has been predicted by some pioneers (Hirayama,
1991; Moore and Roumeliotis, 1992), the association of
plasmoid (flux rope) ejections with flares is much more com-
mon than had been thought (e.g., Shibata et al., 1995; Nitta,
1996; Ohyama and Shibata, 1997, 1998, 2000; Tsuneta,
1997; Akiyama and Hara, 2000). This has led us to ad-
vocate a unified model of flares shown in Fig. 1 (Shibata
et al., 1995; Shibata, 1996, 1997, 1998, 1999). Recent ob-
servations with SOHO/LASCO have also revealed a lot of
evidence of flux rope and disconnection events in coronal
mass ejections (CMEs) (e.g., Dere et al., 1999; Simnet et
al., 1997), and Yohkoh has shown that giant arcades formed
after prominence eruptions or CMEs are physically simi-
lar to flare arcades even though their total X-ray intensity
is much lower than that of normal flares (e.g., Tsuneta et al.,
1992b; Hanaoka et al., 1994). Figure 2 shows several exam-
ples of plasmoid (flux rope) ejections on the Sun from the
largest scale in CMEs (∼1011 cm) to the smallest scale in
compact flares (∼109 cm). The velocity of these plasmoids
range from a few 10 km/s to 1000 km/s, and their maximum
values are comparable to the inferred coronal Alfvén speed
(∼1000 km/s). These images show that the magnetic recon-
nection and associated plasmoid ejection universally occur
on widely different scales.

One of the interesting findings by Yohkoh concerning X-
ray plasmoid ejections is that, in impulsive flares, a plas-
moid starts to be ejected slowly, long before the impulsive

Fig. 1. A unified model of flares: plasmoid-induced-reconnection model
(Shibata et al., 1995). This is an extention of a classical model of erup-
tive solar flares, called the CSHKP model.

phase, and then is rapidly accelerated during the impulsive
phase(Ohyama and Shibata, 1997, 1998; Tsuneta, 1997;
Fig. 3). Similar behavior has also been observed for LDE
flares and CME events (e.g., Kahler et al., 1988; Hund-
hausen, 1999).

Another interesting finding from Yohkoh on X-ray plas-
moid ejection is that there is a positive correlation between
the plasmoid velocity (Vplasmoid ∼ 30–400 km/s) and the
apparent rise velocity of the flare loop (Vloop ∼ 4–20 km/s)
(Shibata et al., 1995):

Vplasmoid � (8 − 20) × Vloop. (3)

This relation (though still very preliminary) suggests that
the plasmoid velocity is related to the reconnection inflow
speed, or vice-versa. This is because the apparent rise mo-
tion of the flare loop is coupled to the reconnection process.
Consequently, magnetic flux conservation leads to

Vloop � (Bin f low/Bloop)Vin f low. (4)

Morimoto and Kurokawa (2000) found a correlation be-
tween the erupting velocity of H-alpha filaments (i.e., a plas-
moid) and the thermal energy density of post-eruption X-ray
arcades. This also suggests that there is a physical relation
between plasmoid velocity and inflow speed (reconnection
rate).

3. Role of Plasmoid: Plasmoid-Induced-Recon-
nection Model

On the basis of these observations, Shibata (1996, 1997)
proposed a plasmoid-induced-reconnection model, which is
an extension of the classical CSHKP (Carmichael, 1964;
Sturrock, 1966; Hirayama, 1974; Kopp and Pneuman, 1976)
model and similar in spirit to the model of Anzer and
Pneuman (1982). In this model, the plasmoid ejection plays
a key role in triggering fast reconnection in two different
ways (Fig. 1).

1) A plasmoid (flux rope) can store energy by inhibit-
ing reconnection. A large magnetic island (plasmoid or flux
rope) inside the current sheet is a big obstacle for recon-
nection. Hence if an external force compresses the cur-
rent sheet, magnetic energy can be stored around the current
sheet. Only after the plasmoid is ejected out of the current
sheet, will the anti-parallel field lines be able to touch and
reconnect. If a larger plasmoid is ejected, a larger energy
release occurs.

2) A plasmoid ejection can induce a strong inflow into
the reconnection site. If a plasmoid is suddenly ejected out
of the current sheet at the velocity Vplasmoid, an inflow must
develop toward the X-point in order to compensate for the
mass ejected by the plasmoid, as has been shown in many
numerical simulations (e.g., Forbes, 1990; Yokoyama and
Shibata, 1994, 2001; Magara et al., 1997; Tanuma et al.,
2001; see also Fig. 4). The inflow speed can be estimated
from the mass conservation law (assuming incompressibil-
ity, for simplicity);

Vin f low ∼ VplasmoidWplasmoid/Lin f low, (5)

where Wplasmoid is the typical width of the plasmoid, and
Lin f low (≥Wplasmoid) is the typical vertical length of the in-
flow region. In deriving Eq. (5), it is assumed that the
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Fig. 2. Various plasmoids (flux rope) with different scales observed on the Sun. (a) Coronal mass ejection (CME), the largest-scale plasmoid on the
Sun (∼1011 cm) observed with SOHO/LASCO on Nov. 1–2, 1997 (Dere et al., 1999). These are running-difference images. The velocity of the CME
is 140–240 km/s. (b) Large-scale X-ray plasmoid associated with an LDE (long duration event) flare on Feb. 21, 1992 (∼1010 cm) observed with
Yohkoh/SXT (Hudson, 1994; Ohyama and Shibata, 1998). The plasmoid velocity is about 100 km/s. (c) Small-scale X-ray plasmoid associated with an
impulsive flare (∼ 109 cm) observed with Yohkoh/SXT on Oct. 5, 1992 (Ohyama and Shibata, 1998). These are negative images. The velocity of the
plasmoid is 250–500 km/s. 1” corresponds to 726 km.
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Fig. 3. Temporal variations of the height of an X-ray plasmoid and the hard
X-ray intensity of an impulsive solar flare on 11 Nov. 1993 observed with
Yohkoh SXT and HXT (Ohyama and Shibata, 1997).

Fig. 4. Temporal variations of both the reconnection rate (electric field
at the reconnection-point) and the height of the plasmoid (magnetic is-
land) for a typical result of 2.5D MHD numerical simulation of magnetic
reconnection induced by plasmoid (flux rope) ejection (Magara et al.,
1997). Units of the height, time, and electric field are L (a half length
between footpoints of a sheared arcade loop), t0 = L/Cs0 (Cs0 is the
sound speed ∼0.4VA), and E0 = Cs0 B0/c, respectively. In a typical
solar coronal condition, L � 5000 km, VA � 1000 km/s, E0 � 2 × 104

V/m, and t0 � 20 sec.

mass flux into reconnection region (∼Lin f lowVin f low) is
balanced by the mass flux carried by the plasmoid motion
(∼Vplasmoid Wplasmoid ). Since the reconnection rate is deter-
mined by the inflow speed, the ultimate origin of fast recon-
nection in this model is the fast ejection of the plasmoid. If
the plasmoid ejection (or outflow) is inhibited in some way,
then fast reconnection ceases (Ugai, 1982; Tanuma et al.,
2001; Lin and Forbes, 2000).

This model naturally explains (1) the strong acceleration
of plasmoids during the impulsive (rise) phase of flares (see
Fig. 3 and next section), (2) the positive correlation between
plasmoid velocity and the apparent rise velocity of flare
loops (Eqs. (3) and (5)), (3) the total energy release rate of
flares and plasmoid ejections (Shibata, 1997), and (4) the

time scale of the impulsive (rise) phase for both impulsive
flares (∼Lin f low/Vplasmoid ∼ 104 km/100 km/s ∼ 100 sec),
and for LDE flares (∼105 km/100 km/s ∼ 103 sec).

It is interesting to note that similar impulsive reconnec-
tion associated with plasmoid ejection (current sheet ejec-
tion) has also been observed in laboratory experiments (Ono
et al., 2001).

4. Nonlinear Instability Caused by Strong Cou-
pling between Plasmoid Ejection (Acceleration)
and Reconnection

In this section, we examine the physical mechanism of
the plasmoid-induced-reconnection in more detail. We con-
sider a situation where reconnection has just begun and a
plasmoid, with a length L p and a width Wp, has just started
to form. The reconnection generates a jet (with the Alfvén
speed VA) which collides with the plasmoid and accelerates
it. Thus the plasmoid speed increases with time, which in-
duces a faster inflow into the reconnection point (i.e., the
X-point), thereby leading to yet faster reconnection and an
even larger energy release rate. This, in turn, accelerates
the plasmoid again, eventually leading to a kind of nonlin-
ear instability for the plasmoid ejection and the associated
reconnection.

Let us estimate the plasmoid velocity in this process, by
assuming that the plasmoid is accelerated solely by the mo-
mentum of the reconnection jet. (Note that we do not deny
the possibility of acceleration of plasmoid by other mecha-
nism such as global magnetic pressure. The purpose of this
section is simply to show how the momentum of the recon-
nection jet can accelerate the plasmoid.) We also assume
that the plasmoid density ρp and the ambient plasma den-
sity ρ are constant with time, for simplicity. In absence of
any appropriate time-dependent theory in a rapidly evolv-
ing configuration, we assume that the steady state mass con-
servation Vi Li = VpWp (Eq. (5)) is valid and also that all
the mass flux (Vi Li ) convected into the reconnection region
(with length of Li ) are accelerated up to Alfvén speed as in
Sweet-Parker or Petschek model.

We first consider the case in which the mass added to the
plasmoid by the reconnection jet is much smaller than the
total mass of the plasmoid (i.e., the plasmoid speed Vp is
much smaller than the Alfvén speed VA). Equating the mo-
mentum added by the reconnection jet with the change of
momentum of the plasmoid, we have

ρp L pWp
dVp

dt
= ρVi Li VA = ρVpWpVA (6)

where we use the mass conservation relation for the inflow
and the outflow, VpWp = Vi Li (Eq. 5). (See Appendix for
detailed derivation of the Eq. (6).) Physically, this means
that the inflow is induced by the outflow (plasmoid ejection).
This is the reason why this reconnection is called plasmoid-
induced-reconnection.

The equation (6) is easily solved to yield the solution

Vp = V0 exp(ωt) (7)

where V0 is the initial velocity of the plasmoid, and

ω = ρVA

ρp L p
. (8)
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Thus, the plasmoid velocity increases exponentially with
time, and the “growth time” (1/ω) is basically of order of
Alfvén time. The inflow speed becomes

Vi = Wp

Li
Vp = WpV0 exp(ωt)

Li (0) + V0
ω

(exp(ωt) − 1)
. (9)

If Wp is constant, the inflow speed increases exponentially
with time in the initial phase, but tends to be a constant
(�ωWp) in the late phase.

As time goes on, the mass added to the plasmoid by the jet
increases and eventually becomes non-negligible compared
with the initial mass (i.e., the plasmoid speed becomes non-
negligible compared with the Alfvén speed). In this case,
we obtain the solution (see Appendix for derivation):

Vp = VA exp(ωt)

exp(ωt) − 1 + VA/V0
. (10)

Hence the plasmoid speed is saturated at around t = tc �
1
ω

ln(VA/V0) and hereafter tends to the Alfvén speed VA as
time goes on. The inflow speed becomes

Vi = WpVp

Li

= Wp
VA exp(ωt)/(exp(ωt) + a)

(VA/ω) ln[(exp(ωt) + a)/(1 + a)] + Li (0)
(11)

where a = VA/V0 − 1. If Wp is constant in time, the inflow
speed gradually decreases in proportion to 1/t after tc.2 On
the other hand, if Wp increases with time in proportion to t
after tc, the inflow speed becomes constant,

Vi = ωWp(t = 0) = ρVA

ρp L p
Wp(t = 0). (12)

In this case, the reconnection becomes steady, and the shape
of the reconnection jet and plasmoid becomes self-similar
in time and space (e.g., Nitta et al., 2001; Yokoyama and
Shibata, 2001).

A typical solution for Wp = constant is shown in Fig. 5,
which reminds us of the observed relation between plasmoid
height vs. hard X-ray intensity (Fig. 3; Ohyama and Shi-
bata, 1997) and explains also the numerical simulation re-
sults (Fig. 4; Magara et al., 1997) very well. It is noted here
that the hard X-ray intensity is a measure of either the elec-
tric field at the reconnection point (E ∝ Vi B) or the energy
release rate (∝Poynting flux ∝ Vi B2/(4π)).

5. Fractal Reconnection
As we discussed in Section 1, we have a fundamental

question: how can we reach the small dissipation scale nec-
essary for anomalous resistivity or collisionless reconnec-
tion in solar flares? Also, even if we can reach such a small
scale, is it true that there is only one diffusion region with a
thickness of 100 cm (and with a length of 10 m or 100 m) in
a solar flare as expected from Petschek’s steady state theory?

The idea that the reconnection process is inherently tur-
bulent, involving a spectrum of different scales, has been

2This kind of evolution occurs when 1) the current sheet length is lim-
ited (Tanuma et al., 2001), 2) magnetic field distribution is non-uniform
around the current sheet (Magara et al., 1997).

Fig. 5. Temporal variations of the plasmoid velocity (Vplasmoid ), its height,
and inflow velocity (Vin f low), in an analytical model (Eqs. (10) and (11))
for the case of VA/V0 = 100. Units of the velocity, height, and time are
VA, L p , and L p/VA , respectively.

around for some time (see Ichimaru, 1975, for examples).
However, here we argue that a plasma with large magnetic
Reynolds number (occurs as in the solar corona, the inter-
stellar medium, or the intergalactic medium) inevitably
leads to a fractal current sheet with many magnetic islands
of different sizes connecting macroscopic and microscopic
scales (Tajima and Shibata, 1997; Shibata, 1997, 1998;
Tanuma et al., 2001).

Let us first consider the Sweet-Parker current sheet with a
thickness of δn and a length λn . This current sheet becomes
unstable to secondary tearing if

tn ≤ λn/VA, (13)

where tn is the growth time of the tearing instability at
maximum rate (ωmax ∝ kmax

−2/5tdi f
−3/5tA

−2/5 and kmax ∝
(tdi f /tA)−1/4, where ωmax and kmax are the maximum
growth rate and corresponding wave number),

tn � (tdi f tA)1/2 �
(

δ2
n

η

δn

VA

)1/2

, (14)

and λn/VA is the time for the reconnection flow to carry
the perturbation out of the current sheet. (As for the theory
of the secondary tearing in the Sweet-Parker sheet, see e.g.,
Sonnerup and Sakai (1981), Biskamp (1992).) That is, if
tn > λn/VA, the tearing instability is stabilized by the effect
of flow. Using Eqs. (13) and (14), we find

δ3
n ≤ ηVA

(
λn

VA

)2

,

i.e.,
δn ≤ η1/3V −1/3

A λ2/3
n . (15)

If this inequality is satisfied, the secondary tearing occurs,
leading to the current sheet thinning in the nonlinear stage of
the tearing instability. At this stage, the current sheet thick-
ness is determined by the most unstable wavelength of the
secondary tearing instability, i.e.,

λn+1 � 6δn R1/4
m∗,n = 6η−1/4V 1/4

A δ5/4
n

≤ 6η1/6V −1/6
A λ5/6

n , (16)
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where Rm∗,n = δn VA/η. The current sheet becomes thinner
and thinner, and when the current sheet thickness becomes

δn+1 ≤ η1/3V −1/3
A λ

2/3
n+1, (17)

further secondary tearing occurs, and the same process oc-
curs again at a smaller scale (Fig. 6). It follows from Eqs.
(16) and (17) that

δn ≤
(

η

VA

)1/6

62/3δ
5/6
n−1, (18)

or
δn

L
≤ A

(
δn−1

L

)5/6

, (19)

where
A = 62/3 R−1/6

m , (20)

and

Rm = LVA

η
. (21)

This fractal process continues until the current sheet thick-
ness reaches the microscopic scale such as the ion Larmor
radius or ion inertial length. The equation (19) leads to

δn

L
= A6(1−x)

(
δ0

L

)x

, (22a)

where
x = (5/6)n. (22b)

From this, we can estimate how many secondary tearings are
necessary for the initial macroscopic current sheet to reach
the microscopic scale. Taking the typical solar coronal val-
ues, δ0 = 108 cm, L = 109 cm, VA = 108 cm/s, η = 104

cm2/s for T = 106 K, we find Rm = 1013 and

A � 0.02. (23)

Since δn must be smaller than the typical microscopic scale,
e.g., the ion Larmor radius (∼100 cm), we have

δn/L < rL ,ion/L , (24)

or
(0.02)6(1−(5/6)n)(0.1)(5/6)n

< 10−7.

The solution of this inequality (see Fig. 7) is

n ≥ 6. (25)

That is, in the solar corona, six secondary tearings are nec-
essary to reach microscopic current sheet.

What is the time scale of this fractal tearing? The time
scale for the n-th tearing is

tn � δ3/2
n (ηVA)−1/2 = (δn/δ0)

3/2t0, (26)

where
t0 = δ

3/2
0 /(ηVA)1/2. (27)

Since Eq. (22) leads to

δn/δ0 � A6(1−(5/6)n)

0 , (28)

λ

λ

λ

δn-1

δn

δ

n-1

n+1

n+1

n

Fig. 6. Schematic view of fractal reconnection.
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Fig. 7. The current sheet thickness (δn/L) in the n-th secondary tearing
(see Eq. (22a)).

where A0 = 62/3 R−1/6
m∗,0 , and Rm∗,0 = δ0VA/η, we find

tn � A9(1−(5/6)n)

0 t0. (29)

Thus we obtain

tn/tn−1 = A(3/2)(5/6)n−1

0 ≤ A3/2
0 (30)

for n ≥ 1. It follows from this equation that

tn ≤ A3/2
0 tn−1 ≤ A(3/2)n

0 t0. (31)

Consequently, the total time from the 1st (secondary) tearing
(t1) to the n-th (secondary) tearing (tn) becomes

ttotal = t1+t2+· · ·+tn ≤ t0 A3/2
0

1 − A3n/2
0

1 − A3/2
0

≤ t0 A3/2
0 . (32)

For typical coronal conditions (described above), this time
scale becomes

ttotal ≤ 6 × 10−3t0, (33)
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which is much shorter than the time scale of the 0-th tear-
ing (t0). Although the 0-th tearing time is long (∼3 × 104–
106 sec for initial current sheet withδ0 ∼ 107–108 cm), the
nonlinear fractal tearing time is quite short (less than 102–
3 × 103 sec), so that the microscopic scale is easily reached
within a short time as a result of the fractal tearing.

It should be stressed that the role of the fractal tearing is
only to produce a very thin current sheet with a microscopic
scale of order of the ion Larmor radius or the ion inertial
length. The fractal tearing does not explain the main energy
release in flares. The main energy release is explained by
the fast reconnection process which occurs after the ejection
of the large scale plasmoid as we discussed before.

6. Summary: A Scenario for Fast Reconnection
Let us summarize our scenario of fast reconnection in the

solar corona, which is illustrated in Figs. 8 and 9 (the latter
is from a numerical simulation by Tanumaet al., 2001 and
it nicely illustrates a part of our scenario). Our scenario can
also be applied to other hot astrophysical plasmas (e.g., stel-
lar corona, interstellar medium, galactic halo, galactic clus-
ters, and so on) for which magnetic Reynolds number and
the ratio of its characteristic scale length to the ion Larmor
radius (or ion inertial length) are very large.

Initially we assume the current sheet whose thickness is
much larger than the microscopic plasma scale. Such a cur-
rent sheet is easily created by the interaction of emerging
flux with an overlying coronal field (e.g., Heyvaertset al.,
1977; Shibataet al., 1992; Yokoyama and Shibata, 1995),
the collision of a moving bipole with other magnetic struc-
ture (e.g., Priestet al., 1994), the global resistive MHD in-
stability in a shearing arcade (e.g., Mikicet al., 1988;
Biskamp and Welter, 1989; Kusanoet al., 1995; Choe and
Lee, 1996; Magaraet al., 1997; Choe and Cheng, 2000;
Cheng and Choe, 2001), or other related mechanisms (e.g.,
Forbes, 1990; Chenet al., 2001).

If the current sheet length becomes longer than the crit-
ical wavelength for the tearing mode instability, the insta-
bility starts. As the instability develops, it enters a nonlin-
ear regime which makes the initial current sheet thinner and
thinner. The current sheet thinning stops when the sheet
thickness becomes comparable to that of the Sweet-Parker
sheet, and thereafter the sheet length increases with time. If
the sheet length becomes longer than a critical wavelength
(Eq. (13)), secondary tearing occurs. Even if the sheet has
not yet reached the Sweet-Parker state, it can become unsta-
ble to the secondary tearing if the sheet thickness satisfies
the same condition (Eq. (13)). Then the same process oc-
curs again at a smaller scale, and the system evolves into
one that is fractally structured. In this way, a microscopicly
small scale (such as ion Larmor radius or ion inertial length)
can be reached within a short time.

Once a small scale is achieved, fast reconnection occurs
because anomalous resistivity can now set in. It is also
possible that fast collisionless reconnection occurs with a
nondimensional reconnection rate of the order of 0.1–0.01 at
this small scale (see recent full particle simulations by, e.g.,
Drake, 2000; Hoshinoet al., 2001; Tanaka, 2001; Horiuchi
et al., 2001). Hence small scale magnetic islands (plas-
moids) created by small scale tearing are ejected at the Alfvén

v
v

in

p

I

II

III

IV

V

Fig. 8. A scenario for fast reconnection. I: The initial current sheet. II:
The current sheet thinning in the nonlinear stage of the tearing instabil-
ity or global resistive MHD instability. The current sheet thinning stops
when the sheet evolves to the Sweet-Parker sheet. III: The secondary
tearing in the Sweet-Parker sheet. The current sheet becomes fractal
because of further secondary tearing as shown in Fig. 6. IV: The mag-
netic islands coalesce with each other to form bigger magnetic islands.
The coalescence itself proceeds with a fractal nature. In the phases III
and IV, the microscopic plasma scale (ion Larmor radius or ion inertial
length) is reached, so that fast reconnection becomes possible at small
scales, V: The greatest energy release occurs when the largest plasmoid
(magnetic island or flux rope) is ejected. The maximum inflow speed
(Vin = reconnection rate) is determined by the velocity of the plasmoid
(Vp). Hence this reconnection is called plasmoid-induced-reconnection.

speed and collide with other islands to coalesce with each
other, thereby making bigger islands (plasmoids). This coa-
lescing process itself also occurs with a fractal nature (Tajima
and Shibata, 1997).

It should be noted that the ejection (acceleration) of plas-
moids (flux rope with axial field in 3D space) can enhance
the inflow into the reconnection point, creating a positive
feedback, i.e., nonlinear instability (as we outlined in Sec-
tion 4). This determines the macroscopic reconnection rate
which may be smaller or larger than the microscopic re-
connection rate. If the macroscopic reconnection rate (in-
flow speed) is larger than the microscopic reconnection rate,
the magnetic flux is accumulated around the diffusion re-
gion, leading to intermittent fast reconnection (Lee and Fu,
1986; Kitabata et al., 1996; Schumacher and Kliem, 1996;
Tanuma et al., 1999, 2001; Fig. 9). On ther other hand, if
the macroscopic reconnection rate is smaller than the mi-



480 K. SHIBATA AND S. TANUMA: PLASMOID-INDUCED-RECONNECTION

 = 3

-20 -10 0 10 20

     

-3
-2
-1
0
1
2
3

 
 
 
 
 
 
 

Time = 5.002

-20 -10 0 10 20

     

-3
-2
-1
0
1
2
3

 
 
 
 
 
 
 100.0

-20 -10 0 10 20

     

-3
-2
-1
0
1
2
3

 
 
 
 
 
 
 160.0

-20 -10 0 10 20

     

-3
-2
-1
0
1
2
3

 
 
 
 
 
 
 210.0

-20 -10 0 10 20

     

-3
-2
-1
0
1
2
3

 
 
 
 
 
 
 242.5

-20 -10 0 10 20

     

-3
-2
-1
0
1
2
3

 
 
 
 
 
 
 275.0

-20 -10 0 10 20

     

-3
-2
-1
0
1
2
3

 
 
 
 
 
 
 300.0

-20 -10 0 10 20

     

-3
-2
-1
0
1
2
3

 
 
 
 
 
 
 325.0

     

-3
-2
-1
0
1
2
3

 
 
 
 
 
 
 350.0

 

 

 

 

 

Gas Pressure
y

Fig. 9. Numerical simulation of reconnection triggered by an MHD fast mode shock (Tanuma et al., 2001), illustrating a part of our proposed scenario
for fast reconnection (Fig. 8): a) passage of the MHD fast shock, b) current sheet thinning (in the nonlinear stage of the tearing instability), c) the
Sweet-Parker reconnection, d) secondary tearing, e) Petschek reconnection as a result of the onset of anomalous resistivity. Slow shocks inherent to
Petschek reconnection are formed.

croscopic reconnection rate, the reconnection may continue
in a quasi-steady state. However, there may be large am-
plitude perturbations around the reconnection point, so that
it would be difficult to maintain quasi-steady reconnection.
The reconnection would be very time dependent with inter-
mittent reconnection and ejection of plasmoids with vari-
ous sizes created by fractal reconnection. Petschek’s slow
shocks are also formed in a very time dependent manner
(e.g., Yokoyama and Shibata, 1994; Tanuma et al., 2001).
The local macroscopic reconnection rate can be much larger
than the average reconnection rate and is determined by the
macroscale dynamics, i.e., plasmoid-induced-reconnection.

In this case, the time dependence is essential for determining
the reconnection rate.

Since this process is scale free, we have fractal structure
in the global current sheet. The greatest energy release oc-
curs when the largest plasmoid is ejected. This may corre-
spond to the impulsive phase of flares. The time variation of
the reconnection rate (and the total energy release rate) asso-
ciated with ejection of plasmoids with various sizes is also
fractal. That is, the power spectrum of the time variation
of the reconnection rate and the energy release rate show a
power-law distribution. This may correspond to the frag-
mented light curves of solar X-ray and radio emissions in
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the impulsive phase of flares (e.g., Benz and Aschwanden,
1992).

Quantitative proof of the fractal nature of the current sheet
(especially in 3D geometry) remains as an important sub-
ject for future numerical simulations and laboratory experi-
ments, both of which will have to be able to handle much
larger magnetic Reynolds number than they currently do
(i.e., Rm � 103–104) in order to solve this fundamental
problem.

Acknowledgments. The authors would like to thank K. Dere, J.
Drake, M. Hoshino, T. Magara, T. Morimoto, M. Ohyama, Y. Ono,
E. N. Parker, M. Scholer, M. Tanaka, T. Terasawa, M. Ugai, M. Ya-
mada, and T. Yokoyama for fruitful discussions. They also thank T.
Forbes and C. Z. Cheng for their careful reading of our manuscript
and their many useful comments and suggestions which are very
useful to improve the paper. Numerical computations were car-
ried out on VPP300/16R and(or) VX/4R at the Astronomical Data
Analysis Center of the National Astronomical Observatory, Japan,
which is an inter-university research institute of astronomy oper-
ated by Ministry of Education, Science, Culture, and Sports.

Appendix. Derivation of Eqs. (6) and (10)
As we wrote in the text, we assume that all the mass con-

vected into the reconnection region (ρVi Li per unit time per
unit length in 2D space) are accelerated to Alfvén speed
VA. Since such accelerated mass (reconnection jet) collides
with the plasmoid, it can accelerate the plasmoid. Denoting
Vp = plasmoid speed, Mp = plasmoid mass, �Mp = mass
convected by the reconnection jet during a short time �t ,
which is equal to increase in plasmoid mass during �t , we
obtain the conservation of momentum as

�MpVA + MpVp = (Mp + �Mp)(Vp + �Vp). (A.1)

Here the left hand side is the total momentum before col-
lision, and the right hand side is the total momentum after
collision. If we neglect the term �Mp in the right hand side
of Eq. (A.1) (i.e., if we assume Vp � VA), we have

Mp�Vp = �MpVA. (A.2)

The plasmoid mass (Mp) and the mass added to the plas-
moid (�Mp) by the jet for a short time �t are written as

Mp = ρp L pWp, (A.3)

�Mp = ρVi Li�t, (A.4)

both of which are per unit length. Using these formulae,
the equation (A.2) becomes ρp L pWp�Vp = ρVi Li VA�t ,
which is equivalent to

ρp L pWp
dVp

dt
= ρVi Li VA. (A.5)

Since we assumed that the mass injection into reconnec-
tion region is induced by the plasmoid motion, i.e., Vi Li =
VpWp (Eq. (5)), the right hand side of equation (A.5) be-
comes equal to ρVpWpVA, so that we get Eq. (6):

ρp L pWp
dVp

dt
= ρVi Li VA = ρVpWpVA. (6)

Note that in deriving above formulae, we did not assume
conservation of kinetic energy. This is because some part of

the kinetic energy is dissipated to heat the plasmoid, lead-
ing to increase in gas pressure (internal energy) of the plas-
moid. Although such enhanced gas pressure may accelerate
the plasmoid further, we neglected the effect of gas pressure
in above treatment for simplicity, since it is not easy to es-
timate how much fraction of internal energy is converted to
the kinetic energy of a plasmoid.

When Vp grows to the value that cannot be neglected
compared with VA, we cannot neglect the term �MpVp in
the right hand side of Eq. (A.1). In this case, the momentum
conservation equation becomes Mp�Vp = (VA − Vp)�Mp.
Combining this equation with Eqs. (A.3) and (A.4), we get

dVp

dt
= ρVp

ρp L p
(VA − Vp). (A.6)

If ρ, ρp, VA, and L p are constant in time, the solution of this
equation becomes Eq. (10):

Vp = VA exp(ωt)

exp(ωt) − 1 + VA/V0
. (10)

Here V0 is the initial velocity of a plasmoid at t = 0, and
ω = (ρ/ρp)(VA/L p).
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