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ABSTRACT

The nonlinear evolution of an emerging magnetic flux tube or sheet in the solar atmosphere is studied
through three-dimensional (3D) magnetohydrodynamic simulations. In the initial state, a horizontal magnetic
flux sheet or tube is assumed to be embedded at the bottom of magnetohydrostatic two isothermal gas layers,
which approximate the solar photosphere/chromosphere and the corona. The magnetic flux sheet or tube is
unstable against the undular mode of the magnetic buoyancy instability. The magnetic loop rises due to the
linear and then later nonlinear instabilities caused by the buoyancy enhanced by precipitating the gas along
magnetic field lines. We find by 3D simulation that during the ascendance of loops the bundle of flux tubes or
even the flux sheet develops into dense gas filaments pinched between magnetic loops. The interchange modes
help produce a fine fiber flux structure perpendicular to the magnetic field direction in the linear stage, while
the undular modes determine the overall buoyant loop structure. The expansion of such a bundle of magnetic
loops follows the self-similar behavior observed in 2D cases studied earlier. Our study finds the threshold flux

for arch filament system (AFS) formation to be ~0.3 x 10° Mx.
Subject headings: instabilities — MHD — Sun: atmosphere — Sun: magnetic fields

1. INTRODUCTION

The magnetic activity observed in the Sun originates from
the emergence of magnetic flux created deep in the interior of
the convection zone (e.g., Parker 1979). The newly emerged
bipolar active regions are called emerging magnetic flux
regions (EFRs; Zirin 1970, 1972).

In previous papers (Shibata et al. 1989a, b, 1990a; Shibata,
Tajima, & Matsumoto 1990b; Kaisig et al. 1990; Nozawa et al.
1992), we studied the nonlinear evolution of emerging mag-
netic flux using a two-dimensional (2D) magnetohydro-
dynamic (MHD) code. In these 2D models, expanding
magnetic loops are formed as a result of the nonlinear growth
of the undular mode (k | B where k is the wavevector and B is
the magnetic field vector) of the magnetic buoyancy instability
(Fig. 1¢) in a horizontal flux sheet embedded at the bottom of
photosphere (Shibata et al. 1989a, b; Shibata et al. 1990b) or in
the convection zone (Shibata et al. 1990a; Nozawa et al. 1992).

The undular mode grows for long-wavelength perturbations
along the magnetic field lines, when the magnetic buoyancy
created by gas sliding along a field line is greater than the
restoring magnetic tension. The most unstable wavelength is
~15H, where H is the pressure scale height (e.g., Parker 1979).
The undular instability is called the Parker instability in astro-
physics because Parker (1966) applied this instability to the
cloud formation in galactic gas disks.

In the nonlinear stage of the undular instability, Shibata et
al. (1989a) found through 2D simulations that the expanding
magnetic loops evolve self-similarly. Numerical results showed
that the rising velocity of magnetic loops, V,, is proportional to
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z until the top of the magnetic loop enters the corona. The
density and magnetic field strength have power-law distribu-
tions p oc z~* and B, oc z~ !, where z is the height measured
from the base of the magnetic flux sheet. On the basis of these
results, Shibata et al. (1990b) obtained an analytical self-similar
solution which agrees well with the numerical results. The
numerically obtained rise velocity of the magnetic loop in the
high chromosphere is 1015 km s ~*, and the velocity of down-
flow along the loop is 30—50 km s %, both of which are consis-
tent with observed values for arch filament systems (AFS;
Bruzek 1967, 1969 ; Chou & Zirin 1988).

The localized magnetic flux sheet under gravity can also be
unstable against the interchange instability (k L B; Fig. 1b).
Cattaneo & Hughes (1988) and Cattaneo, Chiueh, & Hughes
(1990) performed nonlinear 2.5D simulations (2.5D means that
we include the vector components in the third direction but
ignore the variation in the third direction) of the interchange
instability including the diffusive effects such as viscosity, resis-
tivity, and thermal conductivity. We will show in §§ 3.4 and 3.5
of this paper the results of 2.5D ideal MHD simulation of the
pure interchange mode (Fig. 1) and mixed mode (Fig. 1d) of
the magnetic buoyancy instability. In order to simulate the
nonlinear growth of non-plane-wave perturbations (Fig. le),
however, we need to perform full 3D simulations.

Recently, Matsumoto & Shibata (1992) carried out 3D-
MHD simulations of the Parker instability in galactic gas disks
and in EFRs. In this paper, we present a more detailed analysis
of the 3D nonlinear simulations of emerging magnetic flux
regions. The evolution of the emerging magnetic flux depends
on the initial configuration of the magnetic flux and the ini-
tially stored magnetic energy. We consider two types of unper-
turbed magnetic field distributions; a horizontal magnetic flux
sheet, and a horizontal magnetic flux tube. The expansion law
of the magnetic loops are modified from those in 2D expansion
because in three-dimensions the magnetic loops can expand
perpendicularly to the field lines in two directions, vertically
and horizontally.
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F16. 1.-—a—e) A schematic picture of the magnetic buoyancy instability in a magnetic flux sheet

Section 2 gives assumptions, basic equations and numerical
procedures. Numerical results are shown in § 3. In § 4, we
discuss our results and summarize.

2. METHOD OF NUMERICAL SIMULATIONS

We assume that the medium is an ideal gas and the magnetic
field is frozen in the gas. The gravitational acceleration, g, is
assumed constant. Using the Cartesian coordinates (x, y, z), we
take the z-direction antiparallel to the gravitational acceler-
ation vector. The basic equations are

op
atV (p¥V)=0, 1
opV) BB B?
AP NN % —— 4= J)=pe =
ot +V <p V+pl 4n+8nl pg=0, (2
0B
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I p
U=—>F%, 5
v —1p (6]
1
E=--VxB, (6)

where U is the internal energy per unit mass, I is the unit
tensor, g = (0, 0, —g) is the gravitational acceleration, y is the
specific heat ratio, and the other symbols have their usual
meanings.

The unperturbed state is a two isothermal gas layer which
we take as a very simplified model of the solar corona and
chromosphere/photosphere. The initial temperature distribu-
tion outside the magnetic flux tube has the assumed form

T(2) = Ton + (Toor — Tin) % [tanh <Z—‘W-Z—) + 1] . (O

tr

where T,/ T., (= 25 for all our calculations) is the ratio of the
temperature in the corona to that in the chromosphere/
photosphere, z_, is the height of the base of the corona, and w,,
is the temperature scale height in the transition region ( = 0.6H
for all our models).

We assume that the magnetic field is initially parallel to the
x-direction and is localized in the photosphere with the dis-
tribution

By, 2) = [8np(y, 2)/B(y, 2]'*, ®)
where B(y, z) is the local plasma f assumed to be
B, 2) = Bolf (. 2) , &)

1, 2) = % [tanh <Z - Z°> ¥ IJ[—tanh (z - z‘) + 1]
Wo wy
X [tanh <%) + 1][—tanh <y_;_yl) + 1] . (10)

Here B, is the ratio of gas pressure to magnetic pressure at the
center of the magnetic flux tube, z, and z, =z, + D are the
heights of the lower and upper boundaries of the magnetic flux
tube, respectively. The horizontal width of the magnetic flux
tube is W = y, — y,. The initial density and pressure distribu-
tions come from numerically solving the equations of static
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pressure balance
d By, 2)*
dz[p+ 87 +p9=0. (1
In magnetic flux sheet models, we assume y, = —oo and

y1 = co. In all models described in this paper, we adopt z, = 0,
D =4H, and wy, =w; =w,=05H. In the magnetic tube
models, we assume that the density inside the tube is the same
as that outside the tube at the same height.

We impose symmetric boundaries at x =0 and x = X,,,,
periodic boundaries at y = 0 and y = Y,,,,, a symmetric (rigid
conducting wall) boundary at z =Z_;,, = —4H, and a free

boundary at z=Z_, . The effect of the free boundary at -

z = Z ,ax IS minimal.

To start the dynamical evolution, we impose initial pertur-
bations on the magnetic flux sheet or tube. In localized pertur-
bation models, the small velocity perturbations have the form

Ve =f(, DAC, sin [@] cos (?) )

within the finite horizontal domain (X, — 1,/2 < x < X 100
where A, and A, are the wavelength of the small velocity pertur-
bation in the x- and y-directions, respectively, C, is the sound
speed in the low-temperature layer, and A is the maximum
value of V,/C; in the initial perturbation. The wavenumbers of
the perturbation in x- and y-directions are k, ( = 2n/A,) and k,
(= 2m/4,), respectively.

Equations (1)-(4) are rendered dimensionless by using the
normalizing constants H, C,, and p,, where p, is the density at
the base of the gas layer (z = —4H). The unit of time is 7 =
H/C,. When we compare numerical results with observations,
we use H =200 km, C; = 10 km s, and 7 = 20 s, which are
typical values for the solar chromosphere and photosphere.

Equations (1)—(4) are solved numerically by a modified Lax-
Wendroff scheme (Rubin & Burstein 1967), with artificial vis-
cosity (Richtmyer & Morton 1967). The accuracy of such a
MHD code is described in Shibata (1983), Shibata & Uchida
(1985), Matsumoto et al. (1988), and Umemura et al. (1988).
The grid spacing is uniform in x- and y-directions, but slowly
increasing with z in the corona.

Here we shall comment on the effects of the diffusion terms
(viscosity, resistivity, and thermal conduction) ignored in our
basic equations (1)-(4). In the convectively stable region where
the buoyancy frequency N2 = (g/y)dIn(Pp~")/dz > 0, the ordi-
nary buoyancy force becomes a restoring force, which has the
stabilizing effect on the magnetic buoyancy instability. Accord-
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ing to the linear stability analysis including diffusive terms (e.g.,
Acheson 1979), the stabilizing effect is reduced by a factor #/x,
where n and x are the magnetic diffusivity, and the thermal
diffusivity, respectively. In the solar interior where x > #, this
“double diffusive ” reduction of stratification effects makes the
magnetic buoyancy instability more easy to take place than in
adiabatic gas layers. As in thermosolutal convection, which is a
typical example of double diffusive system, the diffusion terms
can also drive overstable oscillations of flux sheets around
their equilibrium position (Acheson 1979; Hughes 1985). The
viscous term helps stabilizing the magnetic buoyancy insta-
bility, especially for short wavelength modes perpendicular to
the field lines (Acheson 1979).

The models examined in this paper appear in Table 1. In all
models, by using an adiabatic index y = 1.05, we reduced the
stabilizing effect of the normal buoyancy force compared to the
case with y = 5/3. Note, however, that the flux tubes in models
9 and 10 will become more buoyant if the effects of thermal
diffusion is included, because the flux tubes in the initial state
are cooler than the surrounding non-magnetic gas in order for
such flux tubes to be in static equilibrium with surroundings.

Although we solve the ideal MHD equations, we cannot
avoid numerical diffusion. We confirmed that when no pertur-
bation is imposed, the initial equilibrium state is unchanged
over the time scale of simulation reported in this paper
(~100H/C,). The effect of numerical diffusion is minimal for
waves whose wavelength is longer than 10 grid points. The
artificial viscosity has no effect in smooth region because it is
switched on only in the region with steep velocity gradient
such as shock waves.

3. RESULTS

3.1. Nonlinear Evolution of the Three-dimensional Magnetic
Buoyancy Instability in an Isolated Horizontal Flux Sheet

Figure 2 shows the time evolution of the 3D magnetic
buoyancy instability for a typical model (model 1), where the
model parameters are f, =1, y = 1.05, z,,, = 14H, W = o,
Ay =4, =20H, and A = 0.05. The model volume is L, x L,
x L, =40H x 20H x 35H, and the number of grid points is
N, X N, x N, =43 x 42 x 101. The solid curves show iso-
contours of the vector potential A, in y =0 plane, which
approximate the magnetic field lines if the field configuration is
roughly two-dimensional. By using the symmetric condition at
x = 40H, twice the computing area is shown in the figure. As
the instability grows, the magnetic flux rises buoyantly as the

TABLE 1
MODELS EXAMINED IN THis PAPER

Volume Grid

Model Bo W/H i/H AJH A (L, L,L/H% (N,N,N,)
1., 1.0 0 20 20 0.05 40 x 20 x 35 43 x 42 x 101
2, 1.0 © 20 0.05 40 x 24.5 53 x 82
3o 1.0 © 20 384 0.05 40 x 384 x 24.5 53 x 51 x 82
4., 1.0 © 20 0.05 40 x 4.8 x 24.5 53 x 51 x 82
S, 0.2 0 10 0.01 40 x 35 101 x 172
[T 1.0 ®© Random 0.01 40 x 35 162 x 101
Teeeinnn 1.0 [°9) 20 0.05 80 x 35 101 x 172
Roiiins 1.0 [ Random Random 0.01 80 x 20 x 35 42 x 42 x 101
[ 1.0 4.0 20 0.05 40 x 40 x 28 43 x 18 x 92
10......... 1.0 4.0 20 0.05 40 x 12 x 28 43 x 18 x 92
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F16. 2—Evolution of the magnetic buoyancy instability in model 1 (8, = 1,
A, = A, = 20H) at y = 0 plane. The solid curves are isocontours of the vector
potential, 4, which approximately show magnetic field lines. The arrows show
velocity vectors. The unit of the velocity vectors is shown at the right bottom.
Top:t/t = 0.0. Middle: t/t = 24.2 Bottom: t/t = 36.9.

gas slides down along the forming loop and matter accumu-
lates in a magnetic pocket at the base of the loop.

Figure 3 shows isocontours of A,, velocity vectors (upper
panel), and log p (lower panel) in y =0 plane at ¢t = 41.97.
Notice the approximately self-similar expansion of the mag-
netic loops, and the shock wave formation at the footpoints of
the magnetic loops, both of which also appeared in the non-
linear stage of the two-dimensional magnetic flux expansion
(Shibata et al. 1989a, b; Shibata et al. 1990b). Strong MHD
shock waves are formed at the footpoints of the loop, because
the maximum downflow speed is about 4C; — 5C,, which
exceeds both the local sound speed and the Alfvén speed (V, ~
2C, — 3C,). We can identify a fast MHD shock in the lower
region and an intermediate MHD shock in the upper region,
although the structure of these shocks is not as clear as in the
2D simulations (Shibata et al. 1989b) because of coarser grids
in 3D simulation.

0 20 40 60 80

FiG. 3—Nonlinear stage of the magnetic buoyancy instability (t =
41.9H/C,) in model 1 at y = 0 plane. The upper panel shows the isocontour
curves of the magnetic vector potential A, (solid curves), and velocity fields
(arrows). The unit of the velocity vectors is shown at the right bottom. The

lower panel shows the isodensity curves. The interval of the isocontours is 0.25
in logarithmic scale.

To bring out the three-dimensional structure, we show in
Figure 4 the magnetic field configuration, velocity field, and the
density distribution in the y = 10H plane. Interleaved struc-
ture of magnetic field lines is created by the growth of the
imposed velocity perturbation (eqn. [12]), which has the
opposite direction in the y = 0 plane (Fig. 3) and y = 10H
plane (Fig. 4).

To see the interleaved structure better, we show a per-
spective view of some magnetic field lines and their projection
onto the y — z plane in Figure 5. Thick curves show magnetic
field lines which start from (x, y, z) =(0, H, 3.5H) and
(x, y, z) = (0, 19H, 3.5H). They are pushed toward y = 10H
around x = 40H by horizontal expansion. Figure 6 shows the
distribution of density, velocity field, and B, in the z = 13.5H
plane at t = 36.97. A dense filament is formed between expand-
ing magnetic loops, where the gas in the flux tubes adjacent in
the y-direction is compressed by the horizontally expanding
motion of the magnetic loops. The computationally observed
filamentary distribution of dense gas is a common feature in
the nonlinear stage of 3D magnetic buoyancy instability
(Matsumoto & Shibata 1992). Such filaments may correspond
to the arch filaments observed in emerging flux regions of the
Sun (Bruzek 1967). The length of the filament is 30H ~ 6000
km, and the width is 4H ~ 800 km.

The density distribution in the x = 40H plane in Figure 7a
also shows the density enhancement around y = 10H and
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X
F1G. 6.—The distribution of density, velocity field, and horizontal magnetic
field (B,) in the nonlinear stage (t = 36.9H/C,) of model 1. The slices at
z = 13.5H are shown. The step width of the density isocontours is 0.25 in
logarithmic scale. The dense region is indicated by hatch.
30
z = 13H. The rising speed of the filament is 1-1.5C; ~ 10-15
N km s~ L. As seen in Figure 7b, the horizontal expansion of the

25 T T T

20+

[¢]

0

FiG. 5—Three-dimensional structure of some magnetic field lines in model
1 at t = 41.9H/C, (top) and their projection onto the y — z plane (bottom).
Thick curves show magnetic field lines starting from (x, y, z) = (0, H, 3.5H) and
(%, y, z) = (0, 19H, 3.5H). Dashed curve shows a magnetic field line starting
from (x, y, z) = (0, 10H, 3.5H). Thin curves show examples of twisted magnetic
field lines.

rising flux tubes produces a vortex motion. This then twists the
magnetic fields and generates torsional Alfvén waves. Exam-
ples of field lines twisted by the vortex motion appear in Figure
5 as thin curves.

3.2. Quasi-self-similar Expansion of Magnetic Loops

Time evolution of the rise velocity, mass density, local Alfvén
speed, and B, at the midpoint of the loop are shown in Figure 8
for model 1. We find approximately self-similar evolution of
magnetic loops. The dashed curves in Figure 8 correspond to a
particular self-similar solution (p oc z~*, B, oc z~') previously
found for 2D loops (Shibata et al. 1989a; Shibata, Tajima, &
Matsumoto 1990b). The 3D numerical results can also be fitted
to these solutions, although B, decreases faster than z ™!, and
V, = B,/./4np ~ const in the early stage of evolution or
around the top of magnetic loops.

The physical meaning of the self-similar solution becomes
clear by considering the phenomenological equation of motion
near the midpoint of the loop (Shibata et al. 1990b),

v, _lop 1[a (B, B
a9 poz ploz\8n) 4=R]’
where R is the curvature radius of the loop. In the region where

p oc z~* and B, oc z~ !, the third term (magnetic pressure term)
in the right-hand side of equation (13) dominates over gravity,

(13)
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F1G. 7.—(a) The density distribution, and (b) isocontours of magnetic field strength (B,), and the velocity field in model 1 at t = 36.9H/C,. The slices at x = 40H
are shown. The unit of velocity vectors is shown at the right bottom of the figures. The step width of the density isocontours is 0.25 in logarithmic scale.

the pressure gradient force, and the magnetic tension, and bal- adjacent loop (see e.g., Fig. 6). Since the horizontal expansion
ances with the left-hand side which scales as z oc exp (at) in the of the magnetic loop is limited by the adjacent loop, the loop
exponentially expanding stage (Shibata et al. 1990b). expansion can occur only in the z-direction. On the other

From flux conservation, the B, oc z~! dependence indicates hand, the magnetic field can expand both in the y- and z-
that the cross-sectional area of the magnetic loop is expanding directions in the early stage of the nonlinear evolution or
quasi one-dimensionally in the z-direction. This regime around the top of emerging loops; then, in these cases B,
appears after the expanding magnetic loop interacts with the decreases faster than z 1. The p oc z~* dependence comes from
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FiG. 8.—The distribution of the (a) rising speed V,, (b) density p, (c) Alfvén speed V,, and (d) the horizontal magnetic field B, for model 1 at the midpoint of the
loop (x = 40H, y = 0). Each solid curve corresponds to t/t = 0, 19.1, 30.2, 37.0, 41.9, and 47.8, from left to right, respectively. The dashed curves denote the

dependence z~* for the density and z ™! for B,. The dash-dotted curve denotes the dependence z 2.

2
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F1G6. 9.—Linear growth rates of the magnetic buoyancy instability. The
wavenumber k is defined as k = (k2 + k2)"/2. Solid curves denote the growth
rate of the magnetic buoyancy instability in magnetic flux sheet with y = 1.05.
See text for other parameters of the unperturbed flux sheet. The numbers
attached to each curve denote the value of k /k,. The dashed curves are for
magnetic flux sheet with y = 5/3. The dash-dotted curve is for a flux sheet with
y = 1.05 which has the same density distribution as the flux tube model
adopted in this paper. Symbols denote the linear growth rate for model 2
(k, = 0314, k, = 0), model 3 (k. = 0.314, k, = 0.164), model 1 (k, = 0.314,
k, = 0.314), and model 4 (k, = 0.314, k, = 1.309) from bottom to top, respec-
tively.

the evacuation of the magnetic loop by gravity (Shibata et al.
1990b).

3.3. Dependence on the Wavelength of Perturbation
Perpendicular to the Magnetic Field Lines

Solid curves in Figure 9 show linear growth rates w of the
magnetic buoyancy instability in an isolated flux sheet with
o=1,7=105 D=4H, Z . = 14H and T, /T, =25 as a
function of the horizontal wavenumber k = (kZ + k2)'/* (see
Horiuchi et al. 1988 and Shibata et al. 1989a for details of the
linear stability analysis). The numbers attached to each curve
denote the ratio k,/k,. When the wavenumber along the field
line (k,) is fixed, the growth rate increases with the perpendicu-
lar wavenumber k,. Thus a perturbation with a shorter wave-
length perpendicular to the field line grows faster than
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long-wavelength perturbations. The dashed curves in Figure 9
show growth rates when y = 5/3. Although we assumed
y = 1.05 for all our models in this paper, a gas with y = 5/3
also becomes unstable against magnetic buoyancy instability
for short-wavelength (k, > k,) perturbations perpendicular to
the field lines. The dash-dotted curve in Figure 9 shows linear
growth rates of the magnetic buoyancy instability in a flux
sheet which has the same density distribution as in our flux
tube model.

The linear growth rate of our nonsinusoidal perturbations
(eqn. [12]) is the same as that in the mixed mode because this
perturbation can be decomposed into two plane wave pertur-
bations whose wave vectors are (k,, k,) and (k, —k,).

The time evolution of the rise velocity at the midpoint of the
magnetic loop (x = 40H, y = 0) is shown in Figure 10 for
several models. The model parameters are Z,, = 14H,
A =0.05, and (a) 4, = o (model 2), (b) 4, = 38.4H (model 3),
and (c) 4, = 4.8H (model 4). Other parameters are the same as
in model 1. When the top of the magnetic loop is below the
base altitude of the corona, the rise velocity of the magnetic
loop increases linearly with height. This expansion law is
written as

V.,/C, = az/H . (14)

The approximate values of a obtained from Figures 8 and 10
are 0.12, 0.08, 0.11, and 0.33, for models 1, 2, 3, and 4, respec-
tively. These values are close to half of the linear growth rate of
the magnetic buoyancy instability shown in Figure 9.

3.4. Nonlinear Evolution of the Pure Interchange Mode

The evacuation of matter at the top of the loop plays an
essential role in forming rising magnetic loops in the Parker
instability. On the other hand, the gas precipitation along the
field lines during the buoyant motion is not allowed for the
interchange instability. In order to show the difference between
the undular mode and the interchange mode, we carried out
2.5D simulation of the pure interchange mode (k, = 0), where
the sliding motion of the gas along the field is forbidden.

Figure 11 shows a result of 2.5D simulation of the pure
interchange mode (model 5). In this model, the initial velocity
perturbation is imposed on V,. The formation of a mushroom
shaped interface between the magnetic field and field free gas,
and the vortex motion are similar to the result of 2.5D simula-
tion of pure interchange instability by Cattaneo & Hughes

2 _ | I 1 ] | | N | |
Ay = o0 Ay = 38.4H Ay = 4.8H

O _ . ]
R
> 1 - - - - »

O I T I /\I I T T I I

0 7 50 0 7 50 0 7 50
FiG. 10a Fic. 10b FiG. 10c

FiG. 10.—The evolution of the rising speed of the magnetic flux at the midpoint of the loop (x = 40H, y = 0) for (a) model 2 (4, = o0), (b) model 3 (4, = 38.4H),
and (c) model 4 (4, = 4.8H), respectively. The solid curves show the rising speed at (a) t/t = 23.8, 29.4, 34.8, (b) 12.0, 23.4, 31.8, and (c) 12.5, 21.5, 25.0, respectively,
from bottom to top.
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(1988), although the diffusion terms included in their simula-
tion are absent in our model, and the thickness of the magnetic
layer in our model is 5 times larger than theirs.

The rise velocity of the magnetic field saturates in a short
time when it reaches the Alfvén speed evaluated at the initial
conditions, and the vertical expansion is nearly halted at
t =24.2t. The deceleration of the rising motion can be
explained by using equation (13). Since the cross-sectional area
of the loop approximately scales as z2, the density and horizon-
tal magnetic field scale as z~2. Thus the magnetic pressure

Vol. 414

3 and cannot

2

gradient term in equation (13) decreases as z~
drive the loop expansion in the nonlinear stage. From p oc z~
and B, oc z~2, we obtain V, oc B,/p'/? oc z~ !, This dependence
on z is consistent with the numerical result shown in Figure 12.

Figure 13 shows a result of 2.5D MHD simulation of the
pure interchange instability when the random perturbations in
V, are imposed at the initial stage (model 6). The maximum
amplitude of the velocity perturbation is 0.01C;.

At t = 20.07, we find small ripples around the upper surface
of the flux sheet. In ideal MHD, the growth rate of the pure

Lagrangian surface

log p
31
l t/T=0
Z/H ,'
L ]
e——
0 Y/H 40

FiG. 11.—Evolution of the pure interchange mode for model 5 (8, = 0.2, 4, = 10H). Left panels show the isocontours of density, midpanels show B,, which trace
the lagrangian position of each test particles, and the right panel shows the velocity distribution. The interval of the density isocontours is 0.25 in logarithmic scale.
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FiG. 12.—Evolution of the Alfvén speed at y = 20H for model 5. Numbers
attached to each curve denote time in unit of H/C,.
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F1G. 13.—Evolution of the pure interchange mode when the random per-
turbation is imposed at the initial stage (model 6). The solid curves denote the

. isocontours of the strength of B,. Top: t/t = 20.0. Middle: t/t = 36.4. Bottom:

t/t =1790.
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interchange mode is larger for shorter wavelength perturbation
perpendicular to the magnetic field lines. In numerical simula-
tion, however, waves with wavelength shorter than several
times of the grid size are significantly dumped by numerical
diffusion. This is the reason why pure interchange modes with
wavelength 9-10 grid sizes grow fastest in the linear stage of
our simulation. In the nonlinear stage, isolated flux tubes are
not formed because horizontal expansion forces the flux tubes
to merge. The vertical expansion speed decreases with time in
the nonlinear stage.

Thus we conclude that nonlinear instability does not exist in
the pure interchange instability and that the pure interchange
instability alone cannot create emerging magnetic loops. These
conclusions are in some part dependent on the absence of
resistivity in our model. As we shall discuss in the next sub-
section, when the system evolves into a configuration suitable
for magnetic reconnection, there is a possibility that isolated
flux tubes are created by magnetic reconnection.

3.5. Two-dimensional Mixed Mode

The perturbations (eqn. [12]) imposed on the unperturbed
flux sheet can be decomposed into two plane-wave pertur-
bations which have the same linear growth rate. Here we
present the results of nonlinear growth of one such mixed
mode plane-wave perturbation.

Figure 14 shows the nonlinear stage of the mixed mode
instability (model 7). In this model, the unperturbed magnetic
fields have B, and B, components where B,(z)/B,(z) = 1; there
is no magnetic shear. The imposed velocity perturbation has
the form V, = AC, sin [2n(x — X ,.x/2)/A.] Within the finite
horizontal region (X, ./2 — 4,/2 <x < X../2 + 4,/2) of
magnetic sheet (z, < z < z,), where A = 0.05, X .., = 80H, and
4. = 20H. The other parameters are the same as in model 1.
We use a 2.5D MHD code to perform the numerical computa-
tion, with a periodic boundary condition assumed at x = 0 and
X = Xmax‘

The nonlinear expansion of magnetic flux in the mixed mode
is essentially the same as that found in the pure undular mode
(Shibata et al. 1989a) and that in the 3D expansion (model 1).
The rise velocity increases linearly with height and the expand-
ing magnetic loop shows self-similar behavior.

The nonlinear growth of the mixed mode instability and its
dependence on the thickness of the magnetic layer has been
studied by S. Nozawa et al. (private communication) using
2.5D resistive MHD code. They found that when the thickness
of the magnetic layer is smaller than the scale height, twisted
flux tubes are formed in the nonlinear stage owing to the mag-

31

Z/H

X/H

FiG. 14—Nonlinear stage of the mixed mode instability for model 7
(Bo = 1, A, = 20H). The solid curves denote the magnetic field lines. t/7 = 68.7.
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Fi1G. 15.—Evolution of ‘the gla@etic buoyancy instability when the random pcfturbations are imposed in the magnetic flux sheet (model 8). The isocontours of B,
(solid curves) and the velocity distribution (arrows) at x = 40H are shown. (a) Linear stage at ¢ = 27.8H/C,, (b) nonlinear expanding stage at t = 70.0H/ C,.

netic reconnection at the foot point of magnetic bubbles that
are formed. Such twisted flux tubes can also be formed in the
nonlinear stage of the magnetic buoyancy instability in a
sheared magnetic layer (Cattaneo et al. 1990). When the thick-
ness of the magnetic layer is larger than the scale height, as in
model 7, the undular instability dominates over the inter-
change instability in the nonlinear stage. Thus magnetic loops
expand and undulate rather than form isolated flux tubes.

3.6. Nonlinear Growth of the Three-dimensional Random
Perturbation

Figure 15 shows the evolution of a magnetic layer when
random velocity perturbations are imposed inside a horizontal
flux sheet (model 8). The maximum value of the perturbation is
0.01C, for V,. In the linear stage, small wavelength ripples are
formed around the interface between the magnetic layer and
the gas layer via the interchange instability (Fig. 15a). In con-
trast to the pure interchange case, magnetic loops can rise into
the corona in the nonlinear stage (Fig. 15b) by precipitating the
gas along the magnetic field lines.

Figure 16 shows the surface of constant magnetic field
strength (| B| = 107 3p}/2C,) at t = 70t. We can see expanding
magnetic loops which have the length ~40H ~ 8000 km. The
width of the magnetic loops increases with time due to hori-
zontal expansion. Further, magnetic field lines are significantly
twisted by the vortex motion apparent in Figure 15b. The rise
speed of the magnetic loops increases with height and the
maximum speed at t = 70.0t is 2C, =~ 20 km s~ . These results
are similar to those in model 1, where the coherent pertur-
bation is imposed.

3.7. Decelerated Magnetic Loop Formed by an Isolated
Magnetic Flux Tube

If an isolated flux tube has the same temperature as the
external medium, it cannot be in magnetostatic equilibrium; it

rises buoyantly. Here we study the case in which the unper-
turbed magnetic flux tube is in magnetostatic equilibrium with
the external medium that has the same density distribution.
Although this stratification stabilizes the interchange mode,
the magnetic flux tube becomes unstable against the undular
mode of the magnetic buoyancy instability (see Fig. 9).

Figure 17 shows the nonlinear stage of model 9 (¢ = 57.77).
The magnetic loop did not ascend as much as in the sheet
model (e.g., model 1), and the rise velocity is smaller
(~0.3C, ~ 3 km s~ !). The evolution of the cross-sectional area
of the flux tube is shown in Figure 18. As the top of the loop
rises, the magnetic loop expands rapidly in the horizontal
direction and occupies the whole volume between
5SH <z < 10H.

80

F1G. 16.—Surface of constant magnetic field strength (| B| = 107 3p}/?C,) in
the nonlinear stage (¢t = 70.0H/C,) of model 8. Twice the computational
domain in y-direction is shown by using the periodic boundary condition.
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F1G. 17.—Nonlinear, saturated stage (t = 57.7H/C,) of the magnetic buoyancy instability in model 9 (B, = 1, W = 4H, 4, = 20H) at y = 20H. Solid curves show

the isocontours of magnetic vector potential (4,). The arrows show velocity vectors.

The time sequence of the distribution of B,, V,/C,, and V,/C,
are shown in Figure 19. Although V, increases with height, it
saturates before the loop enters into the corona and V, stays
nearly constant in time, while the horizontal magnetic field and
the density decrease exponentially with height. The expansion
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F1G. 18.—Evolution of the cross-sectional area of isolated magnetic flux
tube in model 9 at the midpoint of the loop. Solid curves represent the iso-
contours of B,. The step width between each curve is taken logarithmic.
Arrows show velocity vectors. The unit of velocity vectors is shown in the right
bottom. Top:t/t = 0.0. Middle: t/t = 35.7. Bottom: t/t = 57.7.

of the magnetic loop is decelerated after ¢t = 35.7¢ due to the
rapid decrease of the magnetic energy density. Since the mag-
netic pressure term on the right-hand side of equation (13)
scales as z~*, it cannot balance the gravity term, which was
comparable to the magnetic pressure term in the initial stage.
Thus the right-hand side of equation (13) becomes negative
and the buoyant motion of the loop is decelerated. The
maximum height of the loop is about 12H ~ 2400 km.

3.8. Emergence of Flux Tube Bundles

In the emerging flux regions (EFRs) of the Sun, magnetic
flux appears as bundles of flux tubes (e.g., Zwaan 1987). Figure
20 shows a nonlinear evolution of such bundles (model 10). In
this model each flux tube occupies one third of the volume
between Z = 0 and Z = 4H. Four times of the size of the orig-
inal computational domain is shown in Figure 20 with the
periodic boundary condition in the y-direction. Figure 21
shows surface of constant magnetic field strength (|B|=
1073p}2C)att = 43.21.

After the flux tubes begin to rise, they expand both in the z-
and y-directions. The adjacent flux tubes begin to interact with
each other at t = 25.1t. After this stage the expansion becomes
nearly one-dimensional in the z-direction. Figure 22 shows
that dense rising filaments are formed between adjacent
expanding loops. The width of the filaments is ~4H ~ 800 km,
and the rise speed is about C, ~ 10 km s~ . The isodensity
surface in Figure 23 also shows such arch filaments. The length
of the arch filament is ~40H ~ 8000 km.

The time evolution of the rise speed in Figure 24 is similar to
that of the isolated tube (model 9) in the early stage, but the
loops are accelerated after t = 31.0t when the adjacent expand-
ing loops begin to interact with each other. Also, the time
evolution of V, shows this transition from the isolated 2D
tubelike expansion to the collimated 1D sheetlike expansion.

4. SUMMARY AND DISCUSSION

4.1. Two Regimes of Magnetic Loop Expansion

We have studied 3D nonlinear evolution of the magnetic
buoyancy instability in solar emerging magnetic flux regions.
The nonlinear evolution of the magnetic loops can be classified
into two regimes; a free expansion and a collimated expansion.
The free expansion means an expansion not only in the x — z
plane but also allowed in the y-direction in our geometry. On
the other hand, we use the term “collimated expansion ” for an
expansion in the x — z plane but which is restricted in the
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F1G. 19.—a-d) The same as Fig. 8 but for model 9. The time for each curve is t/t = 0,21.0, 35.7, 45.9, 57.7, and 76.8 from left to right. The dashed curve shows z~*

dependence for density. The dash-dotted curve shows z~? dependence for B,

y-direction due to the close packing of a bundle of magnetic
loops in that direction. The free expansion regime appears
when the expanding magnetic loop does not interact with
other magnetic loops. The cross-sectional area of the loop in
this regime increases as z> or faster, and the horizontal mag-
netic field decreases as B, oc z 2 or faster. The increase in rise
speed of the loop saturates shortly after it reaches about half
the sound speed and decelerates. The Alfvén speed remains
nearly constant in this regime.

In the collimated expansion regime, the magnetic loops
expand in a quasi self-similar fashion and the rise speed of the
loop increases with height. This regime appears when the mag-
netic loops are formed from a flux sheet or closely packed
bundles of flux tubes. The time evolution in this regime can be
fitted to a particular self-similar solution of magnetic loop
expansion previously found for 2D loops (Shibata et al. 1989a;
Shibata et al. 1990b), where B, oc z7%, and p oc z~#, although
for 3D loops the horizontal magnetic field (B,) decreases
slightly faster than z~! due to the horizontal expansion. The
rise speed of the loop increases as V,/C, oc az/H, where a turns
out to be half the linear growth rate of the magnetic buoyancy
instability. The speed of the downflow from such expanding
loops exceeds the sound and the Alfvén speeds and strong
MHD shoek waves are created around the footpoints of the
magnetic loops.

4.2. Fundamental Difference between the Interchange and
Undular Instabilities in the Nonlinear Stage

In the nonlinear stage of the pure interchange instability
(k, = 0), the expansion of the magnetic loop slows down
because B, oc z~ 2 and p oc z~ 2, and thus the magnetic pressure

force that drives the instability decreases rapidly as B2/(pz) oc
z73. That the nonlinear instability of the interchange mode
does not exist is in sharp contrast to the undular mode. Thus
we conclude that the undulation of the magnetic field lines and
the resulting downflow along the loop are of essential impor-
tance to sustain the magnetic buoyancy instability continually
in the nonlinear stage. Although the linear growth rate of the
pure interchange mode (k, = 0) is larger than that of the
undular mode, once the rising loops are formed, the undular
mode eventually dominates. The overall nature of the magnetic
flux expansion is characterized by the properties of the undular
mode.

4.3. Three-dimensional Structure of Magnetic Loops

When nonsinusoidal perturbations are imposed on a hori-
zontal flux sheet, a highly interleaved structure of magnetic
field lines emerges. The wavelength of the imposed pertur-
bation determines the horizontal width of each magnetic loop.
If the perturbation is random, interchange mode produces a
fine fiber flux structure perpendicular to the magnetic field
direction. Later the width of magnetic loops increases with
height because of the horizontal expansion.

When the magnetic shear is present, however, the inter-
change modes for short wavelength modes are stabilized and
the width of forming magnetic loops is governed by the most
unstable wavelength of the undular mode (Hanawa, Matsu-
moto, & Shibata 1992). We plan to study the details of the
nonlinear evolution of the magnetic buoyancy instability in
sheared magnetic fields in a future paper.

In the linear stage of magnetic loop expansion, the adjacent
magnetic flux tubes can move almost independently. In the
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FiG. 20.—Evolution of the cross-sectional area of magnetic loops for model
10 (B, = 1, W = 4H, A, = 20H) at x = 40H. Four times of the computational
area is shown by using the periodic boundary condition. The solid curves show
isocontours of B,. The arrows show velocity fields. The unit of velocity vectors
is shown at the right bottom. Top: t/t = 0.0. Middle: t/t = 25.1. Bottom:
t/t =432.

nonlinear stage, however, the adjacent magnetic flux tubes
interact with each other and collimate tubes against expansion
in the horizontal direction. At this stage magnetic flux tubes
merge into a bundle of expanding magnetic loops.

Three-dimensional distribution of the density shows a fila-
mentary structure that was previously found for 3D Parker
instability in galactic gas disks (Matsumoto & Shibata 1992).
Dense filaments are formed in the region between two expand-
ing magnetic loops, where the gas is pinched by the expanding
loops.

4.4. Comparison with Observations

Here we compare numerical results with some observational
data of emerging flux regions (EFRs) on the Sun.

The rise velocity of magnetic loops and filaments obtained
from our numerical simulations is comparable to the observed
rise velocity (10-15 km s~ ') of arch filaments (Bruzek 1967,
1969; Chou & Zirin 1988) when the loops are created from a
magnetic flux sheet or the initial magnetic flux is confined as
bundle of flux tubes. When the initial flux is confined in an
isolated magnetic flux tube, however, the maximum rise speed
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FiG. 21.—The surface of constant magnetic field strength (|B|=
1073p¥/2C,) in model 10 (¢t = 43.27). Four times of the computational domain
in y-direction is shown by using the periodic boundary condition.

(V,~4 km s~ ') appears to be too small to explain the
observed rise velocity of arch filaments.

The length of the rising loop in our numerical simulation is
about the wavelength of the most unstable undular mode
(~20H = 4000 km) in the photosphere. The length increases
with height up to ~10* km at z ~ 5000 km, and further
increases in the corona. These results are consistent with the

20 ]

FiG. 22.—Rising motion of dense filaments in model 10. Solid curves show
isocontours of the density at x = 40H. The step width of the contour curves is
0.25 in logarithmic scale. Top: t/t = 0.0. Middle: t/t = 25.1. Bottom: t/t = 43.2.
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F1G. 23—Density isocontour surface (p/p, = 6.0 x 10~ 7) in the collimated
expansion stage (1 = 43.2H/C) of model 10.

observed separation of two polarities (3000-20,000 km), and
the dimension of arch filaments (=~ 10* km).

The downdraft speed found in simulations is about
3C,~5C, = 30-50 km s~ ! in our models. Strong shock waves
are formed near the footpoints of magnetic loops. These shock
waves and the associated heating of the chromosphere may be
the origin of bright plages observed near arch filament systems
(Bumba & Howard 1965; Born 1974; Shibata et al. 1989b).

The magnetic flux initially stored in the horizontal magnetic
flux sheet in our numerical model is 102° Mx, when the width
and thickness of the flux sheet are 40H and 4H, respectively.
The observed magnetic flux in solar active regions ranges from

vz/cs

VA/CS

FiG. 24c
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1022 Mx in large active regions to 10'® Mx in ephemeral
regions (Zwaan 1987). It is known that there is a threshold flux
0.5 x 102°-1.0 x 102° Mx (Chou & Wang 1987) for an arch
filament formation. In our numerical models, expanding mag-
netic loops are formed when the magnetic flux is greater than
0.3 x 102° Mx (model 10). When the magnetic flux is 10*° Mx
(model 9), magnetic loops cannot expand into the corona. The
latter may correspond to ephemeral regions.

Recently, the Soft X-ray Telescope (SXT) on the Yohkoh
mission (Tsuneta et al. 1991) enabled us to observe the evolu-
tion of EFRs in coronal X-rays with high spatial and temporal
resolution. Comparing the Ha images with soft X-ray images,
it is found that soft X-ray bright features coincide well in space
with Ha arch filament systems in EFRs (Kawai et al. 1992,
1993). Soft X-ray images show looplike structure in EFRs
(Kawai et al. 1992, 1993), which supports the idea that cool
magnetic loops (T ~ 10* K) in the photosphere evolve into
X-ray-emitting coronal loops (T ~ 10® K) by some heating
mechanisms. Numerically observed magnetic loops in the
coronal region may correspond to the soft X-ray loops if
proper heating mechanisms are included.

The soft X-ray images of EFRs show that the length of soft
X-ray loops increases with time. The expansion speed of soft
X-ray loops is 2-5 km s~ ! in the early stage of EFRs (a few
hours after their birth), and their length increases up to 4-
6 x 10* km (Ishido et al. 1993). In a typical numerical model
(model 1), the horizontal expansion speed of magnetic loops is
7-10 km s~ ! just after their emergence into the corona. This
slightly faster speed is not inconsistent with observation
because the numerical simulation covers only very early stage

LOG(RHO)

FiG. 24d

F1G. 24—(a—d) The same as Fig. 8 but for model 10. The dashed curves show z~* and z~! dependence for density and B,, respectively. The dash-dotted curve
shows z~2 dependence. The time is ¢/t = 0, 19.7, 25.1, 31.0, 37.3, and 43.2, from left to right.
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of magnetic flux expansion into the corona (15 minutes after
the magnetic flux emerged into the photosphere).

A coordinated observation between Yohkoh and ground-
based observatories indicates that the soft X-ray loops cover a
wider area than Ha arch filaments, and that the width of soft
X-ray loops is thicker than Ha arch filaments (Kawai et al.
1993). These features are consistent with numerical results.
Numerical results also predict that (1) when the sub-
photospheric magnetic field is not sheared, the soft X-ray loops
are parallel to the Ha arch filaments, (2) soft X-ray loops cover
the area between two Ha filaments, and (3) soft X-ray loops are
twisted by vortex motion generated by horizontal expansion.

We are currently correlating our 3D MHD simulation
efforts with the Yohkoh observations. The details of this com-
parative study will appear in subsequent papers.

In conclusion, our numerical results corroborate the
observed signatures ranging from the total magnetic flux to the
various morphologies of solar active regions. These morpho-
logical signatures include the presence of looplike arch fila-
ment systems for active regions, shocks near the foot region of
the arch, isolated flux tube dynamics for the ephemeral region,
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and the spatial relation between the Ha filaments and soft
X-ray loops.
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