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Abstract

A series of three-dimensional magnetohydrodynamic simulations is used to study the nonlinear evolution of the
magnetic buoyancy instability of a magnetic flux sheet with magnetic shear. A horizontal flux sheet that is initially
placed below the solar photosphere is susceptible to both the interchange instability and the Parker instability (the
undular mode of the magnetic buoyancy instability). The growth rate in the linear stage of the instability in the
numerical simulation is consistent with that predicted by linear theory. In the nonlinear stage, the development
depends on the initial perturbation as well as the initial magnetic field configuration (i.e., the presence of magnetic
shear). When an initial perturbation is assumed to be periodic, the emerging flux rises to the corona and the magnetic
field expands like a potential field, as observed in 2D simulations. When an initial non-periodic perturbation or
random perturbations are assumed, the magnetic flux expands horizontally when the magnetic field emerges a little
into the photosphere. The distribution of the magnetic field and gas tends to be in a new state of magnetohydrostatic
equilibrium. When magnetic shear is present in the initial magnetic flux sheets, the interchange mode is stabilized
so that the emerging loop is higher than in the no magnetic shear case. We discuss how the presented results are
related to the emerging flux observed on the Sun.
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1. Introduction

The magnetic activity observed on the Sun is caused by
the emergence of magnetic flux created deep in the convec-
tion zone (see, e.g., Parker 1979). Sunspots and active regions
are formed by magnetic flux tubes emerging from the interior
of the Sun into the solar atmosphere (see, e.g., Zwaan 1985,
1987) as a result of magnetic buoyancy (Parker 1955). Much
of the dynamics of the emerging magnetic field is not yet well
understood because of its intrinsic nonlinear properties. Hence,
it is important to study the nonlinear dynamics of emerging
magnetic flux and magnetic buoyancy.

It has been found that a flux sheet in magnetohydrostatic
equilibrium in a gravitationally stratified gas layer becomes
unstable due to magnetic buoyancy. This is called the magnetic
buoyancy instability (see, e.g., Hughes, Proctor 1988; Tajima,
Shibata 1997). There are two modes in magnetic buoyancy
instability: the undular mode (k ‖ B) and the interchange
mode (k ⊥ B), where k is the wavenumber vector and B is
the magnetic field vector. The undular mode is often called
the Parker instability (Parker 1966) in astrophysical literature
and the interchange mode is sometimes called the flute insta-
bility or the magnetic Rayleigh–Taylor instability (Kruskal,
Schwarzchild 1954). The undular mode occurs for long-
wavelength perturbations along the magnetic field lines, when
the magnetic buoyancy created by gas traveling down along
a field line is greater than the restoring magnetic tension.
On the other hand, the interchange mode occurs for short-
wavelength perturbations, when the interchange of two straight
flux tubes reduces the potential energy in the system. The
linear growth rate of the interchange mode is generally much

greater than that of the undular mode because of the short
wavelength, though the nonlinear stage is dominated by the
undular mode in many cases (Matsumoto et al. 1993; Tajima,
Shibata 1997). Hence, the undular mode (hereafter, called the
Parker instability) is more important than the interchange mode
in nonlinear problems, and therefore in astrophysical problems.

The first published nonlinear simulation of the Parker insta-
bility was done by Baierlein (1983), although the calculation
was one dimensional. Nonlinear two-dimensional (2D) magne-
tohydrodynamic (MHD) simulations of the Parker instability
were first made by Matsumoto et al. (1988). They found that
giant interstellar clouds are formed in the nonlinear stage of
the Parker instability and that a shock wave is formed within
the flow of the cloud along a rising loop. Applying the simula-
tions of Matsumoto et al. (1988) to the solar case, Shibata
et al. (1989b, 1990a) showed that self-similar expansion of
a magnetic loop occurs in the nonlinear evolution of the 2D
Parker instability in the solar atmosphere (i.e., in the solar
emerging flux). Nozawa et al. (1992) have made an extensive
study of the linear and nonlinear evolution of the Parker insta-
bility in the convectively unstable gas layer. Further 2D simula-
tions have been made by Kamaya et al. (1996) on triggering
nonlinear instability by supernova explosion and by Basu,
Mouschovias, and Paleologou (1997) and Kim et al. (2000)
for application to galactic disks.

As shown by Parker’s (1966) original analysis, however, the
most unstable mode shows three-dimensional (3D) behavior.
That is, the instability has a maximum growth rate for non-
zero k⊥, even when non-zero k‖ is the main cause of the insta-
bility, where k⊥ is the wavenumber vector perpendicular to
the magnetic field and k‖ is the wavenumber vector parallel
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to the magnetic field. Thus, 3D nonlinear simulations are
necessary to examine the true nonlinear evolution of the Parker
instability in 3D space. Matsumoto and Shibata (1992) and
Matsumoto et al. (1993) first reported 3D nonlinear simulations
of the Parker instability for both the solar and galactic cases
and confirmed the basic results of the previous 2D simula-
tions regarding, for example, cloud formation, shock waves
and self-similar evolution. However, the spatial and temporal
scales of these studies depended on k⊥. If a large k⊥ is
initially assumed, the magnetic loop tends to have a thinner
structure and suffers from horizontal expansion, which eventu-
ally suppress the upward expansion (Matsumoto et al. 1993).
Similar thin structures have been found in more recent 3D
simulations (Kim et al. 1998, 2001, 2002; Hanasz et al. 2002).

If magnetic shear is present in the initial magnetized gas
layer, the interchange mode is stabilized, i.e., the growth
of thin structures is suppressed and larger scale structures
may appear (Hanawa et al. 1992). Kusano, Moriyama, and
Miyoshi (1998) using 2.5D MHD simulations showed that
larger scale structures are created in the presence of magnetic
shear. Such magnetic shear is often observed in solar active
regions as twisted flux tubes (Kurokawa 1989; Ishii et al.
1998; Matsumoto et al. 1998; Fan 2001; Magara, Longcope
2001, 2003; Kurokawa et al. 2002; Ryu et al. 2003; Magara
2004; Fan, Gibson 2004) and may be created in the convection
zone (Cattaneo et al. 1990; Matthews et al. 1995) and under
the influence of the Coriolis force (Shibata, Matsumoto 1991;
Chou et al. 1999; Hanasz et al. 2002). Nevertheless, no one has
yet studied the effect of magnetic shear on the 3D nonlinear
evolution of the Parker instability.

In this paper, by using 3D MHD simulations, we present a
detailed analysis of the 3D nonlinear evolution of the Parker
instability in a magnetic flux sheet with magnetic shear and
examine the effects of magnetic shear on the nonlinear Parker
instability. The initial gas layer and magnetic field are assumed
to be suitable for application to a solar emerging flux (see, e.g.,
Shibata et al. 1989a), though the basic physics is also appli-
cable to the galactic case. Section 2 details the assumptions,
basic equations, and numerical procedures of the study. The
numerical results are described in section 3, and section 4 is
devoted to discussion and conclusions.

2. Method of Numerical Simulation

2.1. Assumptions and Basic Equations

The assumptions, basic equations, and initial conditions are
similar to those in Nozawa et al. (1992). That is, we assume the
following: (1) the medium is an ideal MHD plasma, (2) the gas
is a polytrope of index γ = 1.05, (3) the magnetic field is frozen
into the gas, and (4) the viscosity and resistivity are neglected.

Cartesian coordinates (x, y, z) are adopted, such that the
z-direction is anti-parallel to the gravitational acceleration
vector. The gravitational acceleration is assumed to be con-
stant. Thus, the basic equations in vector form are as follows:
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and

E = −1
c

V ×B, (6)

where ρ is the density, V = (Vx,Vy,Vz ) the velocity vector, p

the thermal pressure, t the time, g = (0,0,−g) the gravitational
acceleration, c the velocity of light, I the unit tensor, U the
internal energy, B = (Bx,By,Bz ) the magnetic vector, E the
electric field, and the other symbols have their usual meanings.

2.2. Initial Conditions and Parameters

In the simulations, the units of length, velocity, and time
are H,Cs and H/Cs ≡ τ0, respectively, where Cs and H are
the sound velocity and pressure scale height in the photo-
sphere/chromosphere. It should be noted that the photo-
spheric temperature, Tph can be calculated from Cs, since Tph =
µC2

s /(γRg), where µ and Rg are the mean molecular weight
and gas constant, respectively. Hence, we need not specify the
value of Tph explicitly. The units for gas pressure, density, and
magnetic field strength are p0 ≡ ρ0 C2

s , ρ0 (the initial density
at the base of the gas layer, z = zmin), and B0 ≡ √

(ρ0 C2
s ),

respectively. When the numerical results are compared with
observations, we use H = 200 km, Cs = 10 km s−1, and τ0 =
H/Cs = 20 s, which are typical values for the solar photo-
sphere and chromosphere. In this case, B0 � 500G, assuming
ρ0 = 2.5× 10−7 gcm−3. However, we note that our results are
valid for any values of Cs, H , and ρ0, because our model is
non-dimensional and scale-free.

2.3. Unperturbed State (Initial Conditions)

We consider that the initial state is in magnetohydrostatic
equilibrium. The gas layer is initially composed of three
regions (see figure 1): a convectively stable layer representing
a very simplified model of the solar photosphere/chromosphere
and corona. The temperature is nearly constant in the
upper hot layer (corona) and in the lower cold layer (photo-
sphere/chromosphere). We take the height z = 0 to be the base
height of the photosphere; the initial distribution of tempera-
ture in the photosphere/chromosphere and the corona is then

T (z) = Tph +
1
2

(Tcor − Tph)
[

tanh
(

z − zcor

wtr

)
+ 1

]
, (7)

where Tcor and Tph are the respective temperatures in the corona
and in the photosphere/chromosphere, zcor the height of the
base of the corona, and wtr the temperature scale height in the
transition region. We take wtr = 0.6H and zcor = 13H in all of
our calculations.
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Fig. 1. Schematic depiction of the initial setup.

We assume that the magnetic field is initially horizontal,
B = [Bx(z),By(z),0], and is localized under the photosphere.
The initial density and pressure distributions are calculated
numerically using the equation of magnetohydrostatic pressure
balance:

d

dz

[
p +

B2
x (z) + B2

y (z)
8π

]
+ ρg = 0, (8)

where
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[√
8πp(z)
β(z)

]
cosθ (z), (9)

By(z) =

[√
8πp(z)
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]
sinθ (z), (10)

and the plasma β is the ratio of gas pressure to magnetic
pressure, with

β(z) = β∗/f (z), (11)

where
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[

1 + tanh
(

z − z0

w0

)][
1− tanh

(
z − z1

w1

)]/
4. (12)

Here β∗ is β at the center of the magnetic flux sheet, z0 and
z1 = z0 + D are the heights of the lower and upper boundaries
of the magnetic flux sheet, and D is the vertical thickness of
the magnetic flux sheet. We use D = 4H � 800 km and w0 =
w1 = 0.5H for all of our calculations and take β to be nearly
constant inside the flux sheet (z0 ≤ z ≤ z1). The magnetic field
direction, θ (z), is given by

θ (z) = θ00 π (z1 − z)/D, (13)

when z0 ≤ z ≤ z1, θ00 ≥ θ (z) ≥ 0. Figure 2b shows that the
magnetic field lines at each height have different horizontal
directions.

The free parameters are β∗, zmin (depth of the convection
zone), and z0 (base height of the flux sheet). We will use
β∗ = 1, zmin = −8H � −1600 km, and z0 = −4H � −800 km.

Fig. 2. Degree of magnetic shear in the magnetic sheet (a) for no
magnetic shear and (b) with magnetic shear. In the upper magnetic
layer, the magnetic direction is parallel to the x-direction for both cases.
In the lower magnetic layer, it is parallel to the y-direction (θ00 = π/2)
for the case with shear.

Although these values are not realistic for the actual solar
convection zone (see, e.g., Spruit 1974; Spruit et al. 1990), they
are acceptable for our first attempt to study the fundamental
nonlinear interaction between the magnetic field and convec-
tion just below the photosphere.

The initial temperature, T , density, ρ, gas pressure, p, and
magnetic field strength, |B|, distributions for our base model
(zmin = −8H , z0 = −4H , β∗ = 1) are shown in figure 3.

2.4. Boundary Conditions

We assumed rigid walls at z = zmin and z = zmax and periodic
boundaries at x = xmin, y = ymin and x = xmax, y = ymax, respec-
tively. The rigid wall is the simplest and most reliable condi-
tion to implement at z = zmin in the high-energy density region
of the convection zone. The difficulties are particularly acute
here, since the density ratio between the convection zone and
the corona is ∼ 10−7, so that small errors generated at the free
boundary at z = zmin are enormously amplified by the steep
density gradient in the photosphere and chromosphere as they
propagate from the convection zone into the corona. The effect
of the rigid boundary at z = zmax is small, since the energy
density is smallest in the computational box.

2.5. Numerical Method

Non-dimensional MHD equations (1)–(6) are solved numer-
ically by using a modified Lax–Wendroff scheme (Rubin,
Burstein 1967) with artificial viscosity (Ritchmyer, Morton
1967), as in previous studies (e.g., Shibata 1983; Matsumoto
et al. 1988, 1993, 1998; Shibata et al. 1989a, 1989b, 1990b;
Nozawa et al. 1992)

The magnetohydrostatic gas layer shown above is unstable
for the interchange and Parker instabilities. In order to instigate
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Fig. 3. One-dimensional (z-) distribution of the initial density (solid
curve), pressure (dashed curve), magnetic field strength (dash-dotted
curve), and temperature (dotted curve). ρ0, p0, T0, and B0 denote
the initial density, pressure, temperature, and magnetic field strength
at z = zmin (z = −8H ), respectively.

instability, small velocity perturbations of the form

Vz = f (z)ACs cos
(

2πx

λx

)
cos

(
2πy

λy

)
(14)

are given initially within the finite horizontal domain (|x,y| ≤
λ/2), where λ is the wavelength of the small velocity pertur-
bations. A typical case is λx = λy (ky/kx = 1). Here Cs is
the sound velocity in the photosphere and A (= 10−3) is the
maximum value of Vz/Cs in the initial perturbation. In the 2D
case (model 1), a small velocity perturbation is used, of the
form

Vx = f (z)ACs sin
(

2πx

λ

)
(15)

Although the distribution of the velocity given by equation
(14) is not exactly an eigenfunction, the growth rate of the
perturbation in the linear regime agrees well with that obtained
from an exact linear analysis, as will be discussed in the
Appendix (see also Matsumoto et al. 1988; Shibata et al.
1989a).

The mesh size is ∆z0 = 0.15H for z ≤ zcor, which slowly
increases up to ∆zmax = 0.375H = Tcor/(10×∆z0) for z ≥ zcor.

Table 1. Models and parameters.

Model 2D or 3D kxH or kH λ/H Shear ky : kx

1 2D 0.31 20 0.0 · · ·
2 3D 0.5 12.6 0.0 1 : 1
3 3D 0.5 12.6 0.5π 1 : 1
4 3D random random 0.0 1 : 1
5 3D random random 0.5π 1 : 1
6 3D 0.5 12.6 0.0 2 : 1
7 3D 0.5 12.6 1.0π 2 : 1
8 3D 0.5 12.6 2.0π 2 : 1

Fig. 4. 2D distributions of (a) magnetic field strength |B| =√
B2

x + B2
z (colors), velocity field (vectors) and density (contour lines)

and (b) magnetic field lines (lines) and density (gray scale colors) at
t/τ0 = 80 for the 2D case (model 1). The velocity length 1H is 1 Cs
(sound velocity).

The other parameters are ∆x, ∆y = 0.2. The total number
of mesh points is Nx × Ny × Nz = 300 × 300 × 203 and the
total area is [(xmax − xmin) × (ymax − ymin) × (zmax − zmin)] =
(60H ×60H×43H ). The parameters of the models considered
here are summarized in table 1.

3. Nonlinear Simulation Results

3.1. 2D Case (Model 1)

Let us first discuss the typical nonlinear evolution of the
Parker instability in the 2D case. Figures 4 and 5 show typical
results for the no-shear mode.

All results agree with those of Shibata et al. (1989a), except
for the time sequence; the time evolution of the emerging flux
loop is slow, compared with that of Shibata et al. (1989a,
1989b), because the perturbation amplitude, A, is taken to be
10−3. A self-similar evolution for the density (figure 5b) and
magnetic field strength can be seen in figure 5d,
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Fig. 5. z-distribution: (a) the vertical component velocity (Vz ), (b) the
density (log ρ), (c) the local Alfvén velocity (VA), (d) the horizontal
component of the magnetic field (log B), (e) the magnetic pressure
[log(∆Pm/∆z)], and (f) plasma β (gas pressure/magnetic pressure) at
x = 0H (middle of the rising loop) for model 1 (the case shown in
figure 4) at t/τ0 = 0 (the thinnest line), 50, 60, 70, and 80 (the thickest
line).

ρ ∝ z−4 and B ∝ z−1. (16)

In particular, the plasma β decreases to less than 0.1,
which indicates that the magnetic pressure dominates over
the gas pressure and the magnetic loop continues to increase
(figure 5f). The dominance of the magnetic pressure leads to
the formation of a current-free magnetic loop.

3.2. No Magnetic Shear with a Localized Perturbation
(Model 2)

Let us now discuss the 3D cases. Figures 6, 7, and 8 show
typical results for the no-shear mode. Figure 6c indicates
that the magnetic field in the y-direction emerges from the
narrow region and expands horizontally in the photosphere.
The 3D displays in figure 7 show that the magnetic field lines
become almost vertical in the region where the magnetic field
is concentrated.

In the upper photosphere, the magnetic field is parallel to the
photospheric plane and expands horizontally. Since the scale
height of the photosphere is smaller than the thickness of a

Fig. 6. Nonlinear simulation results for no magnetic shear, where an
initial localized perturbation is assumed (model 2). (a) Distribution of
Vz on the photosphere surface (z = 0H ). (b) Velocity distribution in
the upper photosphere (z = 7H ). Magnetic field (colors), velocity field
(vectors), and density (contour lines) on the (c) y–z surface and (d) x–z
surface.

magnetic sheet, the gas pressure outside the sheet decreases
rapidly. Hence, when the magnetic field slightly emerges
into the photosphere, the magnetic flux expands horizontally
until the magnetic pressure of the sheet is balanced with the
surrounding gas pressure.

The velocity vectors also show that plasma expands in
the horizontal direction more than in the vertical direction
(see figures 6b, c, d). This result implies that the rise of the
magnetic loop stops at lower heights (< 10H ) and the distri-
bution of the magnetic pressure is in a new state of magneto-
hydrostatic equilibrium. The characteristic wavelength of the
magnetic loop is dependent on the width 2–6H (see line C–D
in figures 6a, c) in the photosphere (z = 0) in the y-direction.
Another characteristic wavelength is the comparatively long
27–32H (line A–B in figures 6a, d), which indicates expan-
sion of the magnetic loop in the x-direction in the photo-
sphere (z = 0). However, at z = 7H (the lines E–F and G–H
in figure 6b), the characteristic wavelengths in both the x-
and y-directions increase to 35–40H , because of the inverse
cascade effect (Hachisu et al. 1992).

In figure 8a at t/τ0 = 50, 60, and 70, the top of the magnetic
loop reaches z ∼14H . In the last stage, the magnetic loop does
not rise further. Figures 8b, d, e show the distributions of the
density, magnetic field strength, and magnetic pressure, which
are approximated by

B ∝ exp
(
−∆z

HB

)
, ρ ∝ exp

(
−∆z

Hρ

)
,

Pm ∝ exp
(
− ∆z

HPm

)
∝ exp

(
−2∆z

HB

)
,

(17)

with HB ∼ 4.8, Hρ ∼ 2.4, and HPm ∼ 2.4. What are the
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Fig. 7. Perspective view of the magnetic field at the epoch t/τ0 = 55 for no magnetic shear, where an initial sinusoidal perturbation is assumed (model 2).
The five red tubes show the magnetic field lines that are connected to the points (x,y,z) = [(−10.6H,−5.3H,0H,5.3H,10.6H ),0H,5H ] and the five
blue tubes show the magnetic field lines that are connected to (x,y,z) = [(−8.4H,−4.2H,0H,4.2H,8.4H ),0H,14H ].

Fig. 10. Perspective view of the magnetic field at the epoch t/τ0 = 55 for the case with magnetic shear, where an initial sinusoidal perturbation is
assumed (model 3).

physical meanings of these distributions? They are similar
to typical distributions of the magnetic field and plasma in
magnetohydrostatic equilibrium with uniform temperature and
constant plasma β when the magnetic field is horizontal. In
fact, an exact equilibrium solution predicts Hρ = (1 + 1/β) and
HPm = Hρ . In our simulation results, β ∼ 0.7 (see figure 8f), so
we have Hρ ∼ 2.4, which is consistent with direct simulation

results. The relations Hρ = HPm = HB/2 are also consistent with
magnetohydrostatic equilibrium theory.

Note that the plasma β ∼ 0.7 in the rising magnetic loop
is larger than that in the 2D case (β ∼ 0.1). This is because
the magnetic flux rapidly expands in the horizontal direction
in the photosphere, so that the magnetic field becomes weak.
Hence, the magnetic flux cannot expand into the corona and
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Fig. 8. z-distribution at (x,y) = (0H,0H ) (middle of the rising loop) for model 2 (no-shear mode) shown in figure 6 at t/τ0 = 0, 50, 60, and 70, with
all other details of the graphs being the same as in figure 5. The dashed lines in (b), (d), and (e) indicate the lines of ρ ∝ exp (−∆z/Hρ ) with Hρ = 2.4,
B ∝ exp (−∆z/HB ) with HB = 4.8, and Pm ∝ exp(−∆z/HPm ) with HPm = 2.4, respectively. In (f) the dashed line is β = 0.7.

instead tends to be in magnetohydrostatic equilibrium in the
photosphere and chromosphere.

3.3. Magnetic Shear with a Localized Perturbation (Model 3)

Figures 9, 10, and 11 show the results of 3D calculations
for the shear mode. In figures 9a and 10, the loop that passes
through the origin (x =0, y =0) emerges at an angle∼45◦ to the
x-direction, while for the case of no-shear the loop is parallel to
the x-direction. This is because the magnetic sheet at the depth
where the field line is at 45◦ rises up into the photosphere at
t/τ0 = 50. In the last stage of the calculation after t/τ0 = 50, a
deeper magnetic sheet rises and becomes a loop with an angle
greater than 45◦.

Figure 9c indicates that the area where the magnetic sheet

rises in the photosphere is larger than that for the no-shear
case. In the shear case, the velocity vectors show that the
plasma expands in the horizontal direction more than in the
vertical direction (see figures 9b, c, d) and the magnetic field
expands at medium heights (6–12H ). Figure 9a shows that the
characteristic wavelength in the x-direction is comparatively
long 13H (the line A–B) and the characteristic wavelength in
the 45◦-direction is somewhat short 4–8H (the line C–D).

The same as in the no-shear case, the plasma density and
magnetic field strength distributions in the shear mode can also
be approximated by exponential functions [equation (17)] with
Hρ ∼ 2.1, HB ∼ 4.2 (see figures 11b, d) and the plasma β ∼ 0.9
in the magnetic loop (see figure 11f).
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Fig. 9. Nonlinear simulation results for magnetic shear, where an
initial sinusoidal perturbation is assumed (model 3). The details of the
graphs are the same as in figure 6.

3.4. Random Perturbation (Model 4 and Model 5)

Figure 12 shows the results for a random initial perturba-
tion for both the no-shear and shear modes. In the early
stage [� t/τ0 = 30 (see figures 12a,d)] the characteristic wave-
length in the y-direction is small and equal to λ = 3.5H

(∼ 60H/17). Subsequently the wavelength increases to λ =
4.6H (∼ 60H/13) at t/τ0 =40 (see figures 12b, e) and λ=5.5H

(∼ 60H/11) at t/τ0 = 50 (see figures 12c, f). In figure 13b, d,
at t/τ0 = 50 the magnetic loop rises at z = 19H in the no-shear
case and at z = 13H in the shear case. The distributions of
plasma density and magnetic field are basically the same as
those in previous 3D cases [equation (17)].

3.5. Loop Height for Different Shear Cases

Figures 14 and 15a, b, c, d show the loop height for each
simulation result at t/τ0 = 55 and the maximum loop height.
When ky/kx < 1, the Parker instability is easily caused, so
each loop height rises comparatively high, to 15–24H at t/τ0 =
55 and over 30H at maximum height. On the other hand,
for ky/kx > 1, the interchange instability occurs easily and
the height monotonically decreases when ky is large. When
ky/kx < 1, h/Lx and h/Ly are almost 0.3–0.5, and therefore
the loop expands horizontally. This is due to the stabilizing
effect of magnetic shear in the interchange mode.

Figure 15e shows the plasma β for each simulation result.
When the shear angle, θ00, is large and ky/kx is small, the β

value monotonically decreases (the low β regime). In partic-
ular, when θ00 > 2π , the averaged plasma β is almost constant
against ky/kx . Figures 16a, b, c show that the loop height
increases and the plasma β decreases for shear angles of θ00 =0,
π , and 2π when ky/kx = 2. When θ00 becomes large, the form
of the emerging magnetic loop changes to a dome-like struc-
ture, because the horizontal expansion of the loop is inhibited

Fig. 11. z-distribution at (x,y) = (0H,0H ) (middle of the rising loop)
for model 3 (shear mode) shown in figure 9 at t/τ0 = 0, 50, 60, and 70.
The details of the graphs are the same as in figure 8. The dashed lines in
(b), (d), and (e) indicate the lines of ρ ∝ exp(−∆z/Hρ ) with Hρ = 2.1,
B ∝ exp (−∆z/HB ) with HB = 4.2, and Pm ∝ exp (−∆z/HPm ) with
HPm = 2.1, respectively. In (f) the dashed line is β = 0.9.

by the magnetic shear.

4. Summary and Discussion

4.1. Summary

The 3D simulations show the following:

• When the magnetic field emerges into the photosphere
with a localized and random initial perturbation, the flux
expands horizontally and does not go upward. At that
time, the distributions of magnetic field strength, density,
and pressure can be written as exp (−∆z/H(B,ρ,Pm)), as
in magnetohydrostatic equilibrium, and the plasma β of
the magnetic loop is 0.3–1.3 (the magnetic field strength
is weak).

• The plasma β of the magnetic loop is larger (∼0.01–0.1)
than that of the 2D case. When an initial periodic pertur-
bation is assumed, the emerging flux rises to the corona
and the magnetic field expands like a potential field as in
the typical 2D case.
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Fig. 12. Nonlinear simulation results for the no-magnetic shear mode
(left; a, b, c: model 4) and for the magnetic shear mode (right; d, e,
f: model 5), where a random-noise perturbation is initially assumed.
These figures show a distribution of Vz on the photosphere surface
(z = 0H ) at t/τ0 = 30, 40, and 50.

• When there is no magnetic shear, the magnetic flux
cannot rise as a whole (i.e., as a global or thick magnetic
loop), but rises as fragmented flux tubes because of the
interchange instability. In this case, the flux tubes expand
significantly in the horizontal direction, so that the
average magnetic pressure decreases greatly and hence
the tube soon stops at a low height. However, when there
is magnetic shear, the interchange mode is stabilized (see
the Appendix for a linear stability analysis), so that the
tube can rise as a whole and hence the height of the loop
increases (see figure 15). For the same reason, the loop
height increases with the shear angle or ky .

4.2. Discussion

Shibata et al. (1989a) and other studies have shown that
in 2D calculations the emerging magnetic flux rises into the
corona with a density given by ρ ∝ z−4 and a magnetic field
given by Bx ∝ z−1, due to a potential magnetic field. In the
momentum equation, the gravity term, ρ g ∼ z−4, is smaller
than the magnetic term, B2/dz ∼ z−3, and therefore the expan-
sion of the magnetic loops does not stop in the 2D model.

Fig. 13. Nonlinear simulation results at t/τ0 = 50 for the no-shear
mode (left) and for the magnetic shear mode (right), where a random
noise perturbation is initially assumed (model 4 and model 5). The
upper figures show the distribution of Vz on the upper photosphere
surface (z = 7H ) and the lower figures show the magnetic field (colors),
velocity field (vectors) and density (contour lines) on the x–y surface.

When an initial periodic perturbation is assumed, the
emerging flux rises into the corona and the magnetic field
expands like a potential field. This special case is similar to
model 10 of Matsumoto et al. (1993), where initially straight
magnetic tubes are placed side by side. Because the emergence
of each tube occurs at the same time, the expansions are
blocked in the horizontal direction by each other and hence
they rise in the vertical direction. In this case the emerging
loop structure is similar to the 2D case (see figure 17a).

This result explains why a twisted magnetic tube rises into
the corona in the studies of Magara and Longcope (2003) and
Fan and Gibson (2004). The tube is twisted very strongly.
Because the interchange instability occurs on the surface of
the tube, the flux tube expands both horizontally and verti-
cally. The horizontal expansion is blocked on both sides by
other emerging fluxes. However, after the photosphere is full
of magnetic field, the flux emerges from the upper photosphere
to the corona in a realistic simulation of the solar atmosphere
(see figure 13b). The critical wavelength λc in the photosphere
is estimated to be

λc ∼ 2πH

(
1 +

1
β

)
. (18)

When β = 0.5, we find λc ∼ 18H . In fact, figure 13b shows
that the wavelength of the emerging flux into the corona is
roughly ∼ 18H , in agreement with the above estimate. As
an initial localized perturbation is assumed, the emerging flux
expands in the photosphere (see figure 17b). When an initial
random perturbation is also assumed, the top of each loop of
the emerging flux is different and the magnetic loop expands
horizontally, like the growth of the localized perturbation loop
(see figure 17c).
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Fig. 14. Definitions of h, Lx , and Ly in a loop.

In figure 18 at t = 15–20 min, the expansion velocity in the
horizontal direction is 10–15 km s−1 and the magnetic field
strength is ∼ 10 gauss. This velocity is estimated by assuming
that the kinetic energy is equal to the magnetic energy,
ρv2 ∼ B2/(8π ). Where ρ ∼ p/C2

s and v2 ∼ B2/(8πp/C2
s ) =

C2
s /β. If β = 1, v ∼ 1Cs = 10 km s−1. Although this

velocity is large compared to the observed typical value for the
photosphere, the expansion time-scale is very short (� 5 min,
see figure 18b) and the size is small (� 4000 km). Therefore
such phenomena may be observed by the high resolution La
Palma, Swedish Vacuum Solar Telescope (De Pontieu et al.
2004). Future observations, using Solar-B for example, will
reveal the detailed features of the emerging flux.
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Appendix. Linear Stability Theory and Comparison with
Nonlinear Simulation

A.1. Linear Theory

In order to study the main characteristics of the linear insta-
bility of the magnetic flux sheet with magnetic shear, we
analyze the linear stability of the flux sheet with a normal-
mode method similar to that of Horiuchi et al. (1988). We
consider the growth of a small perturbation that has a functional
form δW ∝ exp(iωt + ikxx + ikyy), where W is the physical
quantity (ρ, p, v, B), and δW is its perturbation. The linearized
equations are the same as those in Horiuchi et al. (1988) and
Nozawa et al. (1992) and the eigenvalue (ω) and eigenfunction
are calculated numerically.

Figure 19 shows the growth rates iω as a function of
horizontal wave number kH = H

√
(k2

x + k2
y) for two cases,

(a) the no-shear mode and (b) the shear mode, when β∗ = 1,
γ = 1.05, D = 4H , zmin = −8H , z0 = −4H , zcor = 13H ,
and Tcor/Tph = 25. The numbers attached to each curve
indicate the ratio ky/kx . When the wavenumber along the
field line (kx) is fixed, the growth rate increases with the

Fig. 15. Normalized loop height (a, b, c: h/H , h/Lx , h/Ly ) as a
function of ky/kx at t/τ0 = 55 for a localized perturbation. The numbers
indicate the shear angle, θ00 (radian). Here, h is the height of the
emerging flux loop, Lx the half length of the loop, and Ly the width of
the loop (see figure 14). Also shown are (d) the maximum heights of
the loop and (e) the values of the averaged plasma β (see figure 11f).

perpendicular wavenumber, ky . Thus, a perturbation with a
shorter wavelength perpendicular to the magnetic field line
grows faster than perturbations with longer wavelengths.

The linear growth rate of the non-sinusoidal perturba-
tions (14) is the same as that of the sinusoidal perturba-
tions (single plane wave) in the shear mode because the non-
sinusoidal perturbation can be decomposed into two plane
wave perturbations whose wave vectors are (kx, ky) and
(kx,−ky).

Since the perturbations are added in the direction parallel
to the magnetic field on the top surface of the flux sheet, the
Parker mode dominates at long wavelengths (ky/kx = 0), where
the linear analytic growth rate has a relative maximum value
iw ∼ 0.124 at kH = 0.275 (λ = 23H ).

When ky/kx = 0, the growth rate is larger for the no-shear
mode (a) than that for the shear mode (b). This is because the
interchange mode is coupled in (b), even for ky = 0, since there
is a layer where kx ⊥ B in the sheared flux sheet.

On the other hand, the growth rate is generally smaller in (b)
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Fig. 16. Nonlinear simulation results for shear angles of θ00 = 0 (left; a, d) at t/τ0 = 50, π (middle; b, e) at t/τ0 = 55, and 2π (right; c, f) at t/τ0 = 55
when ky/kx = 2 (models 6, 7 and 8) for (a, b, c) the x–y surface (see figure 6d) and (d, e, f) the plasma β distribution in z at (x, y) = (0H,0H ) (see
figure 8f).

Fig. 17. Schematic pictures of emergence in (a) strong twisted flux tube, (b) weak twisted flux tube or magnetic flux sheet, and (c) random perturbation
with no magnetic shear.

Fig. 18. Time evolution of the y-component of the velocity and
magnetic strength at x = 0H , y = 10H , z = 5H for model 2.

Fig. 19. Normalized growth rate (in units of Cs/H ) as a function of k

(kH =
√

k2
x + k2

y H ) for ky/kx = 0, 1, 2, 4, and ∞ (1.0e10) for (a) the
no-shear mode and (b) the magnetic shear mode. β∗ = 1.0 and γ = 1.05
are assumed.



1006 S. Nozawa [Vol. 57,

Fig. 20. Time evolutions of the x-component of the velocity at z = 0 for models 1, 4, and 5. (a) Mode analysis and time evolution of log |Vx |. The full
line is λ = 60H (k′ = 1, kH = 0.10), the dashed line k′ = 2 (λ = 30H , kH = 0.21), the dot-dashed line k′ = 3 (λ = 20H , kH = 0.31), the dotted line k′ = 4
(λ = 15H , kH = 0.42), and the full line with ∗ the time evolution of log |Vx/Cs| at the point (x,y,z) = (0,0,0). The dotted line represents the growth rate
obtained from linear stability analysis (iω = 0.124) for λ = 20H (k′ = 3, kH = 0.314). Also shown are (b) the no-shear mode and (c) the shear mode of
log |Vz |, with the meanings of the lines being the same as in (a).

than in (a) for short wavelengths. This is because the inter-
change mode tends to be stabilized by the magnetic tension
force in the sheared magnetic field.

Therefore, for the shear mode (b), the maximum growth rate
of ky/kx = 0 is larger than that of ky/kx = 1,2, as the bottom of
the sheet is unstable because kx ⊥ B.

With B = 0 and ky/kx = 1010 for the no-shear mode, the
growth rate does not have a maximum and increases monoton-
ically with the wavenumber. The growth rate in this case is the
same as the pure Rayleigh–Taylor instability, which is am

√
kg.

Here, am is a parameter of the magnetic interchange instability,
and has a value of 0.33.

A.2. 2D and 3D Nonlinear Simulations with Single or
Random Perturbations

The horizontal wavelength (λ/H = 20) of the initial pertur-
bation is close to the wavelength of the maximum growth rate

for β = 1; the growth rate is 0.12 (see the thick dotted line in
figure 20a). Since the perturbation given in the initial condition
is not an eigenfunction, the most unstable wavelength does not
grow, but other modes are excited by the nonlinear effect. The
above results show that the instability grows on the wavelength
given in the initial conditions in the 2D case.

Figures 20b, c show the results for a random initial perturba-
tion for both the no-shear and shear modes. It is found that the
growth rate in this case is 0.4. Comparing this value with linear
theory, we find the corresponding wavenumber is kH = 1.7
(λ = 3.7H ) for ky/kx = ∞. This λ = 3.7H is consistent with
18 × ∆x (= ∆y = 0.2H ), which agrees with the maximum
wavelength resolution of the numerical scheme.
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