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Magnetic reconnection is a strong candidate for a coronal heating mechanism, and heating by forced
magnetic reconnection is investigated here. Two dimensional, nonlinear magnetohydrodynamic
simulations are used to investigate forced magnetic reconnection in a compressible plasma. The
reconnection occurs when a sheared force-free field is perturbed by a slow disturbance(pulse) at the
boundary which is representative of the solar corona where the reconnection is induced by the
photospheric motions. The case of driving by successive pulses, which generate a series of heating
events which may interact with each other, is considered. This is in order to model the heating of the
corona by a series ofnanoflareevents. For small perturbations, the simulation results are consistent
with the previous analytic theory based on linear approach where a current sheet is formed initially
at the resonant surface followed by reconnection and then release of magnetic energy. For large
amplitude perturbations, or close to the threshold for tearing instability, the system exhibits strong
nonlinear aspects. Following the second driving pulse, the current sheet expands along the separatrix
before relaxing to a reconnective equilibrium and releasing even more magnetic energy for the same
amplitude perturbation. ©2005 American Institute of Physics. [DOI: 10.1063/1.1831278]

I. INTRODUCTION

It has been known for several decades that the Sun’s
corona is heated to millions of degrees. However, which
physical process can keep supplying this kind of heating is
an interesting question which is yet to be answered,1–4 al-
though evidently the coronal heating mechanism is crucially
dependent on the strong coronal magnetic field. In recent
years, much international effort has been focused on acquir-
ing high resolution data using Yohkoh, Solar and Helio-
spheric Observatory(SOHO), Transition Region and Coronal
Explorer(TRACE) and making parallel advances in theoret-
ical modeling to explain the heating mechanism and predict
its observable signatures.

It is now accepted that the Sun’s corona is highly dy-
namic and the heating process could be sporadic. It has been
suggested that small scale events known asnanoflares,5 oc-
curring frequently in large numbers could account for the
energy needed to maintain the hot solar corona. Thus, the
underlying physical processes should be similar to those in
larger energy release events, namely, flares. In highly con-
ducting plasmas, magnetic reconnection is closely associated
with the release of magnetic energy and plasma heating, in
particular, in solar flares, as well as in many other contexts
both in astrophysical and laboratory plasmas.6 Reconnection
allows the magnetic topology to change, and magnetic en-

ergy to be converted into thermal and kinetic energy, on time
scales which are far more rapid than the global ohmic diffu-
sion time. One form of magnetic reconnection, which can
occur as a result of the resistive magnetohydrodynamic
(MHD) instability, is the tearing mode. Another, of more
relevance to coronal heating, and of interest here, is forced
reconnection, when the necessary prerequisite for the pro-
cess, a current sheet, is generated by external deformation of
the initially smooth magnetic field. Forced magnetic recon-
nection in the solar corona is very likely to be initiated by the
displacement of the photospheric footpoints, though it may
also be triggered by newly emerging flux or by coronal dis-
turbances.

The forced reconnection scenario was pioneered by an
analysis of the “Taylor problem,”7 in which a slab plasma
with a field reversal is subjected to a sinusoidal boundary
disturbance, driving current sheet formation, and subsequent
reconnection at the neutral sheet. This model has since been
the subject of considerable study both as a fundamental prob-
lem in plasma physics and with application mainly in the
formation of magnetic islands and their effects on confine-
ment in magnetically confined fusion devices.8–11 Numerical
simulations of the nonlinear phase have been carried out in
Ref. 12.

In the context of the solar corona, a more relevant con-
figuration is a sheared force-free field rather than a neutral
sheet, and the interest is more in the energetics of the pro-
cess. Reference 13 studied forced magnetic reconnection us-
ing a linear approach(analytical model) where they consid-
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ered a low-b plasma embedded in a sheared force-free field.
It was found that when the equilibrium was perturbed by a
boundary displacement of the formdo cosky, the field ini-
tially evolves(on an Alfvénic time scale) to an “ideal equi-
librium” which has a current sheet at the resonant surface.
The perturbed flux in this state is denoted byc1

sid. Thus, the
total flux function in the ideal equilibrium is the sum of the
unperturbed and perturbed flux functions, i.e.,c=co+c1

sid.
After a longer time when resistivity becomes important, re-
connection occurs and the system relaxes to a lower energy
“reconnected equilibrium” containing magnetic islands. The
total flux in reconnective equilibrium state is given byc
=co+c1

srd. The transition time for the system to evolve from
the ideal equilibrium to the reconnected equilibrium is esti-
mated to bethS−1/2, whereth s~1/hd is the global resistive
time scale andSf=sth /tAd ; tA is the Alfvén transit timeg is
the Lundquist number.13 The energy released as heat is the
magnetic energy difference between the equilibrium with the
current sheet and the equilibrium with magnetic islands,
which is found to beDEM ~do

2fsa ,kd, wherea is the shear in
the initial equilibrium. This energy release can be larger than
the energy input from the driving disturbance, as some of the
stored energy of the initial field is dissipated. The driving
perturbation is thus a trigger, rather than the primary source
of heating. The heating can become large even for small
boundary displacements, and formally diverges at the insta-
bility threshold for tearing instabilitysa2−k2d1/2,p. Refer-
ence 14 also studied continuous plasma heating by consider-
ing an interplay between the periodic external driving and
internal reconnection. The effective reconnection time scale
and the plasma heating rate were derived suggesting that the
most effective heating is obtained when the time scale of the
external driver is comparable to that of the effective recon-
nection.

Further investigations were carried out in Ref. 15 to
study the nonlinear dynamics of forced reconnection in a
sheared field. The simulations using a two-dimensional(2D)
magnetohydrodynamics(MHD mode were carried out apply-
ing a slow transient displacement,

vsz= 0,td = H− sdo/tdcoskyẑ if 0 ø t ø 10

0 otherwise,
J s1d

at one boundarysz=0d, wheret=10tA is the pulse duration.
These numerical results show close agreement with the linear
theory13 only for large or intermediatek (e.g.,k=2p /3) and
small do. For smallerk, and largerdosù0.05d, the nonlinear
effects, which reduce the energy release from that predicted
by linear theory, were found to be quite important in the
simulations. These nonlinear effects are more pronounced
when the shear in the field is close to the tearing instability
threshold. Beyond this, linear theory breaks down as men-
tioned above and simulations show even stronger nonlinear
effects, in particular, predicting a large but finite energy re-
lease. According to the linear theory, the magnetic island
width scales asDW~do

1/2, so even for small perturbations,
DW can be quite large. The simulation results of Ref. 15
found close agreement from the linear theory for small
dos,0.05d, but for largedo the island widths are found to be

narrower in the simulations due to nonlinear saturation of the
reconnection, which is influenced by the interaction between
the finite sized island and the boundary.

Heating in the solar corona is believed to be due to su-
perposition of many individual heating events, which may or
may not be independent of one another. This is the essence of
the nanoflare scenario.5 Thus, it is interesting to investigate
the nonlinear dynamics of forced magnetic reconnection con-
sidering the interaction of multiple events. Here we further
develop the simulations of Ref. 15 to study the effect of more
than one driving pulse at the boundary, focusing on the en-
ergetics. We consider, as in previous work, that the field is
initially subjected to a transient boundary disturbance which
triggers current sheet formation and a reconnection event,
releasing(usually) some of the stored energy of the initial
field. At a later time, perhaps before the relaxation is com-
plete, a further pulse triggers a second reconnection and fur-
ther energy release. It should be noted that the final state of
the field(for a single forced reconnection event) is naturally
different from the initial state. Hence, a second pulse, even if
widely separated from the first in time, could have quite a
different heating effect from the first. In principle, the pro-
cess might repeat with a series of driving pulses and conse-
quent heating events, but we focus here mainly on the sim-
plest case of two successive pulses. In Sec. II we describe the
numerical model, presenting the results and comparing with
the linear theory, which can make some predictions about the
effect of successive pulses in Sec. III. The conclusions are
outlined in Sec. IV.

II. NUMERICAL MODEL

A. Description of model

The simulation domain consists of a rectangular region
0,y,Ly and 0,z,Lz and is shown in Fig. 1.

The initial magnetic field is given by a linear one-
dimensional sheared force-free field:

FIG. 1. The simulation domain whereLy andLz represent the length along
the y andz axis. The arrows indicate the rotation of the magnetic field with
the z coordinate. The perturbation is applied onz=0 plane.
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1Bx

By

Bz
2sz,t = 0d = Bo1cosFaSz−

Lz

2
DG

sinFaSz−
Lz

2
DG

0
2 , s2d

whereBo anda are constants witha as the shear in the field.
When this field is perturbed with wave vector in they direc-
tion at the boundary surfacez=0, the midplane of the simu-
lation domain corresponding toz=0.5Lz is a resonant surface
where the magnetic field in they direction vanishessk ·Bo

=0d and a current sheet may be formed at this midplane for
all values ofa.

We consider compressible plasma governed by the fol-
lowing set of equations described in a nondimensional form:

]v

]t
+ v · = v = r−1f− = p + J 3 B + n¹2vg, s3d

]r

]t
+ r = ·v + v · = r = 0, s4d

]p

]t
= − sg − 1dp = ·v − = · srvd, s5d

]A

]t
= sv 3 Bd − hsJ − Jod, s6d

B = = 3 A , s7d

J = = 3 B, s8d

where the pressurep evolves adiabatically. Here, the density
r, velocity v, vector potentialA, magnetic fieldB, electric
currentJ, time t, viscosityn, and resistivityh are normalized
by ro, Alfvén velocity vA=sBod /Îmoro, LzBo, Bo, sBo/moLzd,
Alfvén time tA=sLz/vAd, sLz

2/tAd, smo/Lz
2tAd, respectively.

As in Ref. 15, an external fieldhJo is added to Eq.(6), where
Jof== 3Bsz,t=0dg is the current density in the initial state.
It is used for compensating the global resistive diffusion(due
to the relatively low magnetic Reynolds number,S,104

considered in the simulations) in the initial equilibrium. In
the case of solar corona, the dynamics is usually dominated
by the magnetic pressure. Thus, the parameterbo, defined as
the ratio of gas to magnetic pressure, is generally considered
small. In the following results,bo=0.1 unless otherwise
stated.

The velocity at the boundarysz=0d is perturbed with the
following pulses applied attpulse:

vsz= 0,td =5− doS v

2p
Ds1 − cosvtdcoskyẑ if tpulseø t ø

2p

v
+ tpulse

0 if t .
2p

v
+tpulse, 6 s9d

wherek=s2pd /Ly. Here,v anddo are the width and ampli-
tude of the pulse, respectively(at the end of the pulse, the
boundary is displaced bydo cosky). The time dependence is
chosen to give a smooth variation but, in fact, as expected
from linear theory, the subsequent dynamics depend almost
entirely on the total displacementsd=evdtd and the pulse
time dependence has little effect. With this choice of pulse
displacement, we aim to simulate a perturbation similar to
those expected in the solar corona. It could, for example,
represent a displacement by an exploding granule at the foot-
point of the photospheric line-tied coronal magnetic loop.
The velocity at the opposite boundary is assumed to bevsz
=Lz,td=0 and there are periodic conditions aty=0 andLy.
The numerical code used to solve Eqs.(3)–(8) is based on a
two point centered finite difference approximation and the
Runga-Kutta-Gill time integration method.16 The grid num-
bers are 1283256 alongy andz directions and the points are
uniformly spaced across the domain.

B. Single driving pulse revisited

Although the primary interest here is on the effects of
repeated driving pulses, we first revisit the case of a single

driving pulse13,15 in order to gain further understanding of
the code and its results, and for comparison with the multiple
pulse case. We consider the case when 2p /v=10, i.e., the
perturbation comes to rest after ten Alfvén times(the dura-
tion is not important so long as it is large compared withtA

and small compared with reconnective time scaletR). The
other parameters in their nondimensional units are fixed:a
=3p /4, k=2p /3, h=10−4, n=10−4, Ly=3, Lz=1.

In Fig. 2, we show three different time snapshots of the
x component of the current densityJx (in gray scale) and the
flux function Ax (in contours) for do=0.1 andbo=0.1. We
can see that initially a current sheet is formed at the resonant
surfacez=0.5 and the flux contours follow the perturbation
of the boundary. As the time progresses, the current sheet is
relaxed and the magnetic islands are formed.

Let us now consider the detailed energy balance. All the
other parameters are fixed as above. The averaged Poynting
flux across the boundaryz=0 is

Fp =
1

Ly
E

0

Ly

sBx
2 + By

2dvzsz= 0ddy. s10d
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The average(over the simulation domain) magnetic
sEMd and kineticsEKd energies are computed as follows:

EM =
1

LyLz
E

0

LyE
0

Lz B2

2
sy,z,tddz dy, s11d

EK =
1

LyLz
E

0

LyE
0

Lz rv2

2
sy,z,tddz dy. s12d

Thus,EMst=0d=Bo
2/2=0.5 andEKst=0d=0.

The Ohmic dissipation rate is

Q =
h

LyLz
E

0

LyE
0

Lz

fJx
2sy,z,td + Jy

2sy,z,td + Jz
2sy,z,tdgdz dy,

s13d

such that att=0,

Qst = 0d = Qo =
h

LyLz
E

0

LyE
0

Lz

fJox
2 + Joy

2 + Joz
2 gdz dy,

with Jox
2 +Joy

2 +Joz
2 =saBod2. Thus, for our choice of param-

eters,Qo=5.551 61310−4.
In Fig. 3, we plot these quantities as a function of time.

It can be clearly seen[Fig. 3(a)] that the kinetic energy is
insignificant compared to the magnetic energy. As expected,
the sum of Poynting flux and the dissipation rate is equal to
the sum of derivatives of kinetic and magnetic energies[Fig.
3(b)]. The magnetic energy[see Fig. 3(c)] increases initially
during the external perturbations0, tø10d but then it re-
laxes and approaches a final value which is lower than the
initial state (t=0, EM =0.5). The maximum energy immedi-
ately aftert=10 corresponds to the energy of an ideal MHD
equilibrium while the energy in the final state is the resistive
MHD equilibrium, where magnetic reconnection has pro-
gressed sufficiently.15 Thus, the energy dissipated, which is
the energy available for heating the plasma, is the difference

FIG. 2. (Color online). The current densityJx (gray scale) and the flux
function Ax (contours) in the simulation domain fordo=0.1, bo=0.1. Each
panel represents different timest as shown.

FIG. 3. Various quantities as a function of time:(a) Poynting flux (poy),
denoted by small dashed line; derivative of magneticsEMd energy, denoted
by long dashed line; derivative of kineticsEKd energy, denoted by dot-
dashed line; dissipation ratesQ−Qo; whereQo at t=0), denoted by solid
line. (b) −sQ−Qod+poy denoted by solid line and the derivative of the total
energy fsdEM /dtd+sdEK /dtdg denoted by dashed line.(c) Averaged mag-
netic energy,EM denoted by solid line.
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between the energy of the two equilibria. Thus, some energy
of the initial equilibrium is extracted after the perturbation,
which is consistent with the prediction of linear theory13 and
previous simulations.15 In this paper, we will study the effect
of various parameters on the energy release.

Figure 4 shows the averaged(over the simulation do-
main), magnetic(top panel), and kinetic(bottom panel) en-
ergies as a function of time for three different values ofbo.
Note that there is a period of dynamic activity as the bound-
ary moves and the current sheet forms(althoughEK is still
small compared withEM) which dies away quite rapidly. As
bo increases, the magnetic energyEM decreases but the ki-
netic energyEK remains unchanged. The reduction inEM

with increasingbo is due to the fact that a part of the energy
flux supplied by the boundary perturbation is absorbed by the
compressible plasma as the thermal energy. We shall assume
bo=0.1 and since the kinetic energy is insignificant com-
pared to magnetic energy, we will only consider magnetic
energy changes in what follows.

Finally, we consider the effect of varyingdo which sig-
nifies the change in the magnitude of the perturbation, keep-
ing other parameters the same. The magnetic energyEM for
three values ofdo (0.05, 0.1, 0.2) is plotted as a function of
time in Fig. 5(a). As expected, the larger the magnitude of
the perturbation(and hence larger Poynting flux), the larger
is the magnetic energy increase due to the disturbance. Fol-
lowing the linear theory,13 where it was shown that the mag-
netic energy release is proportional todo

2, we plot in Fig.
5(b), the quantityDEM fEM −EMst=0dg /do

2 as a function of
time. This enables us to see the effect of nonlinearity as time

progresses. It can be clearly seen from Fig. 5(b) that the
initial stages can be described by linear theory but just after
t=50, nonlinearity inv3B term in Eq.(6) becomes impor-
tant and as time progresses, the nonlinearity becomes more
pronounced for largerdo. Thus the energy release(the differ-
ence between the energy after the pulse and that of the re-
connective field) is affected by nonlinearities.

III. MULTIPLE PULSES

A single reconnective scenario has proved very useful
for investigating heating due to external perturbations of
magnetic field. A current sheet is formed at the resonant sur-
face, which subsequently relaxes after reconnection, forming
magnetic islands; a significant amount of initially stored
magnetic energy can be released in this way, often more than
the energy input by the perturbation itself. However, the
nanoflare coronal heating scenario suggests that energy re-
leases should occur as a sequence of events. These events
may not be independent of each other. Therefore, it is impor-
tant to investigate the energetics of forced reconnection with
a series of driving pulses. Unlike the existing “braiding” nu-
merical experiments,17 where complex footpoint motions re-
sult in quite a complicated magnetic field evolution with
many current sheets or filaments appearing, we focus here on
magnetic reconnection by considering superposition of el-
emental reconnective events. This paper is thus a first step,
building from individual or elemental reconnection events
towards realistic scenarios with many interacting reconnec-

FIG. 4. Averaged(a) magnetic energyEM (b) kinetic energyEK as a func-
tion of time for three values ofbo=0.01 (solid), 0.1 (dot-dashed), 1.0
(dashed) for a givena, k, anddo.

FIG. 5. (a) Averaged magnetic energyEM as a function of time for three
values ofdo=0.05 (solid), 0.1 (dot-dashed), 0.2 (dashed) for a givena, k,
andbo. (b) DEM fEM −EMst=0dg /do

2 as a function of time.
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tions. The simplicity will prove to be helpful in detailed un-
derstanding of the basic physical processes involved. We
consider here the situation where a boundary displacement is
applied att=0, as in previous work on forced reconnection,
but then a subsequent displacement is applied at some later
time triggering further reconnection and energy dissipation.

A. Linear theory of multiple pulses

Naive consideration of driving by successive pulses
might suggest that the energy release should be expected to
be roughly the sum of the energies released by the individual
pulses. Consideration of linear theory(valid for small bound-
ary displacements) indicates that this is not the case. For
simplicity, assume that we have two driving pulses both of
amplitudedo and wave numberk, as will be investigated in
the numerical studies below. According to the linear theory
of forced reconnection, the final equilibrium state(the recon-
nected equilibrium) depends only on the total boundary dis-
placement, so in this case will be given byco+c1

srd

3sy,z;k,2dod. That is, the reconnected field is that corre-
sponding to the net boundary displacement which is 2do. If
the second driving pulse were applied immediately after the
first, clearly the initial perturbed state would be given by a
perturbed flux functionc1

sidsy,z;k,2dod, that is, the ideal
equilibrium for 2do, and hence the total energy release would
be four times that of a single pulse(not the sum of the indi-
vidual pulses).

Now, if the second pulse is applied at some later time,
whilst the initial current sheet is in the process of relaxing,
the magnetic field configuration, and hence the energy input
due to the second boundary disturbance, depends on when
this occurs. Thus, according to linear theory, the energy re-
lease depends on the timing of the pulse, as it is the differ-
ence between the energy just after the pulse(which is depen-
dent on the time the pulse occurs) and the energy of the
reconnected state(which is independent of the timing of the
pulses).

Following Ref. 14, who studied driving by oscillatory
boundary motions, we note that the most general equilibrium
state of the field is given by a linear combination of the
reconnected and ideal equilibria. So long as the boundary
displacements are slow compared with an Alfvén time, the
field must at any instant be in such an equilibrium state.
Thus, just after the second boundary displacement is applied,
the perturbed flux function is given byc1=Ac1

sid

3sy,z;k,2dod+s1−Adc1
srdsy,z;k,2dod, where the constantA

determines the relative contribution of each equilibrium.
Note that we do not expectA=1, as would be the case for
the field just after a single pulse, since islands are present just
before the second pulse is applied. Immediately following
the pulse, there is no time for reconnection to occur and
hence the island size(or the value ofc at the resonant sur-
face) must be unchanged. Thus,A is determined by the con-
straint thatAc1

sidsy,Lz/2 ;k,2dod+s1−Adc1
srdsy,Lz/2 ;k,2dod

=c1sy,Lz/2 ,tpulsed where the quantity on the right hand side
is the perturbed flux function at the resonant surface at the
instant the second pulse is applied. This will be somewhere
between 0, iftpulse=0, andc1

srdsy,Lz/2 ;k,dod, if tpulse is large

and the field is fully reconnected. It should be noted that the
structure of the field, according to linear theory, is just a
current sheet at the resonant surfacez=Lz/2 superimposed
on an island chain(whose width depends on the pulse tim-
ing). This is shown in Fig. 10 below.

B. Numerical simulations of multiple pulses

As seen in the preceding section, the relaxation time of
the field is long compared with the Alfvén time, so it is
important to consider the case when a new pulse is applied
while the field is still not fully relaxed. Thus, nonlinear ef-
fects that originate from the interaction of several pulses will
be a significant factor. We apply the first pulse, as before, at
t=0, but now also apply a second driving pulse att=200. At
this time, the field has partially relaxed following the first
pulse. The pulses are of the same magnitudedo and wave
numberk and each comes to rest after ten Alfvén times. In
subsequent work, we will consider differentdo andk.

In Fig. 6, we show averaged magnetic energyEM versus
time for two values ofdo; 0.01 and 0.1. In Fig. 6(a), the
dashed and dotted curves fordo=0.01 and 0.02, respectively,
are also shown for comparison for theone-pulsecase. As
seen(solid curves), with the onset of the second pulse(at t
=200) more magnetic energy is supplied to the system than
was supplied by the first pulse. This is entirely consistent
with expectations, as described above, since the energies of
two pulses add quadratically. For the two-pulse case, even
though the system relaxes to similar energy state after the

FIG. 6. Averaged magnetic energyEM as a function of time for “one” pulse
(dashed) and “two” pulse(solid) cases(see the text) for (a) do=0.01. The
dotted line for the one pulse case fordo=0.02 is also shown for comparison
(b) same as(a) exceptdo=0.1.
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reconnection(that is, the reconnected field for a perturbation
2do, with small nonlinear modifications), different quantities
of energy can be extracted from a perturbation if applied in
succession. This also means, as discussed in Sec. III A
above, that the energy release depends on the timing of the
series of pulses. This is because the magnetic energy release
is the difference between the peak of the “spike”(which
depends onwhen the pulse is applied) and the reconnected
field energy, the eventual steady state(which is almost inde-
pendent of the pulse timing). In this two-pulse case withdo

=0.01, the magnetic energy release(difference between the
maximum and minimumEM) just after the first pulse is 2.8
310−5, and 1.5310−4 after the second pulse giving a total
energy release of,1.8310−4. In comparison, a single pulse
of magnitudedo=0.02 releases about 2.2310−4 energy even
though the system relaxes to similar energy state after the
reconnection. Hence, two separated pulses of same magni-
tude and wave number release slightlyless energy than a
single combined pulse. Clearly the degree to which the en-
ergy is reduced is a function of the timing of the second
pulse.

In Fig. 6(b), the magnetic energy release is larger than in
Fig. 6(a) because the magnitude of the perturbation applied
is large. The dashed line indicates the case when no second
pulse is applied and the system relaxes after the first pulse
0, tø10. The energy release is also large compared to Fig.
6(a) but the time dependence is not followed long enough for
fully reconnected state to be achieved.

It should be noted from Fig. 6 that successive pulses of
same magnitude show different energy input because the ini-
tial states of the magnetic field(just prior to the pulses) are
different. This is illustrated in Fig. 7 whereBx, By, andBz are
plotted as a function ofy at the boundarysz=0d for different
timest. When the first pulse is applied att=0, Bz=0 and the
initial magnetic field determines the start of the Poynting
flux. Towards the end(seet=9.87) of the first pulse the field
components have significantly changed. Now let us consider

the field configuration just before the start of the second
pulse, for example, att=199.82. Here,Bz is nonzero andBx

andBy are quite different from the one whent=0. Thus, the
initial equilibrium of the system at the start of the second
pulse is quite different than at the start of the first pulse,
which suggests that the Poynting flux will be different, and
hence also the magnetic energy input.

It is interesting to compare thex component of current
densityJx and the flux functionAx for one- and two-pulse
cases. Figure 8 shows this comparison where the first and
second columns indicate the same time snapshots fordo

=0.1 when one and two pulses are applied, respectively, at
the boundary[see also Fig. 6(b)]. Obviously, the top panel is
the same but there are two main differences in the subse-
quent panels. Strong current densities can be seen along the
separatrix fort=210.7 just after a second pulse of the same
magnitude is applied. Also, the magnetic island widths are
large for subsequent times in the case of two pulses. In gen-
eral, this is not surprising for the following reasons. The
latter is entirely consistent with linear theory, see above,
which predicts that the reconnected state for two pulses will
be the same as that for a single pulse of magnitude 2do, and
hence the island width will increase by a factorÎ2 if a sec-
ond pulse is applied. Also, as mentioned in Sec. III A, the
general equilibrium configuration for two-pulse case consists
of ideal and reconnective equilibrium and hence we expect to
see the current sheet and magnetic islands together after the
second pulse(right column). In order to see the details and to
fully understand any nonlinear effects, we must compare the
current densities and flux functions obtained from numerics
with the analytical(linear) model. First, we consider the
single pulse case. Thus, we compare in Fig. 9 the time snap-
shots obtained from numerical simulations and the linear
theory.13 The first column is for one-pulse case obtained
from numerics when a perturbation of magnitudedo=0.1
was applied for 0ø tø10. The second column showsAx ob-
tained from the expressions derived in the linear theory13 for
the same perturbation. Since in linear theory the current den-
sity is infinite at the resonant surface and strictly does not
show in the gray scale, we have indicated this schematically
by a thick, dark line(using a finite width Gaussian profile)
on either side ofz=0.5 in the top panel of the second col-
umn. Also, according to the linear theory,13 the magnetic
island width isDW~do

1/2, which can be large even for small
perturbations. But numerical simulations(here in the bottom
panel of column one and in Ref. 15) show that nonlinear
saturation of reconnection decreases the island width.

Next, let us compare the two-pulse case ofdocosky with
the one-pulse case of 2docosky. In Fig. 10, first and second
column show this, respectively. Clearly, the reconnective
equilibrium (bottom panels) are not that different as the final
states are very similar. This is in good agreement with linear
theory. However, for the top panel it appears that in the two-
pulse case, just after the second pulse, the resulting equilib-
rium with the current density along the separatrix should be
close to the superposition of the ideal and reconnected equi-
librium as suggested in Sec. III A. To investigate this, we
assume that in two-pulse case the boundary has been dis-
placed by 2docosky. Next, we need coefficientA to calcu-

FIG. 7. Bx (solid), By (dashed), Bz (dotted) at the boundaryz=0 for various
times t as shown.
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late c. We calculate the perturbed flux function predicted by
linear theory just after the second pulse is applied as ex-
plained in Sec. III A. Thus, the perturbed flux function is a
linear combination of the “ideal” and “reconnected” equilib-
ria for the net displacement magnitudes2dod, with the com-
bination determined by the fact that the degree of recon-
nected flux is the same as just before the disturbance. This is
shown in the third column of Fig. 10, where, as above, the
infinite current density sheet is represented graphically as a
finite width line. Note that the surprising appearance of the
current structure according to linear theory, a current sheet
crossing the separatrix, is a simple consequence of the fact
that in linear theory perturbations inevitably superpose by
simple addition. Thus the formation of the current sheet
along the separatrix, a clear feature of the numerical simula-
tions(see first column of Fig. 1), is clearly a nonlinear effect.

On the other hand, the reconnected equilibria for the two
pulses(first column) and single pulse of 2do (second column)
are very similar, and both are similar to the reconnected equi-
librium predicted by linear theory for a 2do displacement
(third column). The island widths in the two numerical cases
are very slightly reduced by nonlinear effects, consistent
with previous results.15 We then recalculatec by using this
value of A and the expressions forc1

sid and c1
srd derived in

Refs. 13 and 14. In Fig. 10(top panel, third column), we plot
this c which is the linear combination of the ideal and re-
connective equilibria for the perturbation of 2docosky. The
dark line atz=Lz/2 is to indicate that the current density is
infinitely large according to the linear theory.13 The bottom
panel in third column is the straightforward reconnective
equilibrium calculated using the analytical expression13 of

FIG. 8. (Color online). Comparison of
current densityJx (color scale) and the
flux function Ax (contours) at various
times t=10.7, 210.7, 469.3, and 625
when one pulse(first column: 0, t
ø10) and two pulses(second column:
0, tø10; 200ø tø210) are applied.
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c1
srd (with pulse magnitude 2do). Careful comparison of Figs.

9 and 10 indicate that the presence of a current sheet along
the separatrix in the two pulse case is due to the combination
of ideal and reconnective equilibrium, as suggested in linear
theory,14 with some modifications due to nonlinear effects.

So far, we have only considered the case ofLy=3 (i.e.,
k=2p /3). It was predicted in the analytical model13 and later
confirmed with numerical simulation15 that the final energy
is lower as the region sizeLy (wave numberk) is longer
(smaller). Thus, more energy of the initial field prior to de-
formation is extracted when a pulse of smaller wave number
k is applied. The numerically calculated energy dissipation
agrees quite well with the linear theory predictions for inter-

mediate wave numbersk. However, for smallk (long wave-
lengths), the magnetic energy dissipation is found to be re-
duced compared to the predicted values by the linear theory
because close to tearing stability threshold,sa2−k2d1/2øp,
perturbations are very large even for smalldo (see Fig. 4 in
Ref. 15). So nonlinear effects are very significant.

In Fig. 11 we show the averaged magneticEM as a func-
tion of time for variousk values when two pulses are ap-
plied: 0, tø10 and 200ø tø210. Ask decreases, the spike
of averagedEM after the second pulse disappears. This is a
surprising result, as it conflicts with expectations that the
boundary perturbation should produce a Poynting flux into
the field and hence give an initial increase in magnetic en-

FIG. 9. (Color online). The first col-
umn is for do=0.1 for one pulse case
whereJx andAx are obtained from nu-
merics. The second column isdo=0.1
and one pulse case whereJx and cx

(same asAx) are calculated from linear
theory (Ref. 13).

FIG. 10. (Color online). The first column is two-pulse case withdo=0.1. The second column is one-pulse case withdo=0.2. In both these columns, current
density and flux function values are obtained from numerical simulations. The third column is for linear case withdo=0.2 (with linear combination ofc1

sid and
c1

srd in the top panel and reconnective case in the bottom panel(see the text).
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ergy(associated with the current sheet formation). In order to
see the changes in the current densityJx and flux functionAx

just after the second pulse is applied, we plot in Fig. 12 the
time snapshots ofJx andAx for system sizeLy=3 (top panel),
6 (middle), 9 (bottom panel) for t<199 (just before the sec-
ond pulse was applied) andt<215 (some time after the sec-
ond pulse). Notice that when the second pulse is applied at
t=200, the field has partially relaxed after reconnection in all
three cases(left column), but a short time after the second
pulse, the amplitude of the current density increases for
larger(smaller) Lyskd and the current sheet is slightly shifted
up from the midplanez=0.5. The latter must be a nonlinear
effect. The width of the magnetic island is also increased. In
short, for smallerk after the second pulse is applied, a much
stronger current sheet forms and reconnection occurs rapidly
and the averagedEM curves are dragged down resulting in
the disappearance of the spike. This suggests that the nonlin-
ear reconnection rate12 just after,50tA increases more rap-
idly after the second pulse. Further investigation of the rea-
sons for this will be a subject of future work.

C. Three pulses

We have analyzed the case of two pulses in detail, but
clearly in the solar corona there would be a continual series

FIG. 11. The average magnetic energyEM as a function of time for different
wave numbersk when the boundary is perturbed by two pulses: 0ø tø10
and 200ø tø210.

FIG. 12. (Color online). Time development of current densityJx (color scale) and the flux functionAx (contours) for k=2p /3 (top panels), 2p /6 (middle
panels), and 2p /9 (bottom panels) when two pulses are applied(see the text).
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of heating events which may be randomly distributed in time
and magnitude. As a preliminary step towards modeling this,
we briefly look at the case of three driving pulses. Multiple
pulses will be investigated in more detail in future.

In Fig. 13, we compare thex component of current den-
sity Jx and the flux functionAx when three pulses are applied
at the boundary: 0, tø10, 100, t,110, and 400, t,410.
The time development clearly indicates that when the first
pulse is applied, the current sheet is formed at the resonant
surface and the correspondence between the flux and the cur-
rent density suggest that the field is in force-free equilibrium.
As the second pulse is applied, the current density is more

confined and stronger at the resonant surface. By the time the
third pulse is applied, the system has already started to relax
with magnetic islands and now the current sheet is quite
sharp at the X point.

The averaged(over the simulation domain) magnetic en-
ergy versus time for this case is shown in Fig. 14. The solid
curves show three peaks of maximum averagedEM just after
each pulse. The dashed and dot-dashed lines are averagedEM

for one-pulse case withdo=0.05 anddo=0.15, respectively.
Although pulses of small magnitudes when applied in suc-
cession give slightly less magnetic energy compared to a

FIG. 13. (Color online). Time devel-
opment of current densityJx (color
scale) and the flux functionAx (con-
tours) when three pulses are applied
(see the text).
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single pulse of thrice the magnitude, ongoing current sheet
reconnection is a viable dissipation mechanism even for
weak but continuous external perturbations.

IV. CONCLUSION

Forced magnetic reconnection is a plausible candidate
for solar coronal heating mechanism. Energy release is trig-
gered by boundary disturbances, which initiate current sheet
formation and subsequent magnetic reconnection. In the case
of the corona, such disturbances will be ubiquitous and may
include footpoint displacements or newly emerging flux. A
key feature of forced reconnection is that the energy dissi-
pated may be much larger than the energy input from the
driving disturbance. Coronal heating is likely to occur as the
result of the superposition of many energy release events
known as nanoflares. Here, we have made a first step towards
modeling this within the forced reconnection scenario by
considering heating due to two or more driving pulses, gen-
erating a series of energy release events which are not inde-
pendent of each other. Thus, we have numerically analyzed
the magnetic energy release for a two-dimensional, forced
magnetic reconnection situation where a highly conducting
low b plasma with a sheared force-free field is perturbed by
slow pulses at the boundary. This allows nonlinear aspects of
the process to be investigated.

For simplicity, we have considered here the case where
the pulses have the same wave number. The linear theory of
forced reconnection has been extended to deal with this mul-
tipulse scenario. This predicts that the final reconnected field
state depends on the net boundary displacement, and that just
following the second driving pulse, the field is in a linear
combination of the ideal and reconnected states, hence hav-
ing both a current sheet and islands. The magnetic energy
release depends on the timing as well as on the magnitude of
the successive perturbation. The numerical results agree well
with the linear theory concerning the final reconnected state,
although nonlinear saturation, due to the finite size of the
islands relative to the boundaries, causes a small reduction in
island size. However, there is a strong nonlinear effect even
for small driving perturbations, in that a current sheet forms

along the already existing separatrix following the second(or
subsequent) pulse. The energy release is found to depend on
the timing, which has been shown to be due to the depen-
dence of the energy input of the driving perturbation on this
factor; in general, the energy release is reduced as the time
gap between pulses increases.

The underlying causes of a most intriguing result, that
longer wavelengths generate the formation of very strong
current sheets and correspondingly faster reconnection, will
be the subject of future investigation. A further important
topic for future work will be to consider successive pulses of
different magnitudes and wavelengths. This could introduce
some different effects, as the second driving perturbation will
be out of phase with the preexisting island chain, so it is not
clear what will be the structure of the second current sheet
nor how the energy release of the second pulse will interact
with the first.

In the solar corona, the foot-point perturbations due to
exploding granules are likely to be continuous and quite pos-
sibly randomly distributed. This may be modeled by assum-
ing a random distribution for the magnitudes, width, and the
time intervals between the pulses. We will subsequently im-
pose a random distribution of driving pulses to match such
granular disturbances and then calculate evolution of the
field, including the distribution of the energy-releasing
events. This also raises some interesting new issues, since a
property of forced reconnection is that each driving pulse
releases some stored energy of the initial field(hence acting
more as a catalyst than as a primary source of energy). This
cannot continue indefinitely, as the energy of the initial field
will become depleted. Thus, to maintain a steady heating
scenario, there must be some energy supply to replenish the
background field.
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