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ABSTRACT

The saturation level of the magnetorotational instability (MRI) is investigated using three-dimensional MHD
simulations. The shearing box approximation is adopted and the vertical component of gravity is ignored, so that
the evolution of the MRI is followed in a small local part of the disk. We focus on the dependence of the
saturation level of the stress on the gas pressure, which is a key assumption in the standard � disk model. From
our numerical experiments we find that there is a weak power-law relation between the saturation level of the
Maxwell stress and the gas pressure in the nonlinear regime; the higher the gas pressure, the larger the stress.
Although the power-law index depends slightly on the initial field geometry, the relationship between stress and
gas pressure is independent of the initial field strength and is unaffected by ohmic dissipation if the magnetic
Reynolds number is at least 10. The relationship is the same in adiabatic calculations, where pressure increases
over time, and nearly isothermal calculations, where pressure varies little with time. Over the entire region of
parameter space explored, turbulence driven by the MRI has many characteristic ratios such as that of the
Maxwell stress to the magnetic pressure. We also find that the amplitudes of the spatial fluctuations in density and
the time variability in the stress are characterized by the ratio of magnetic pressure to gas pressure in the
nonlinear regime. Our numerical results are qualitatively consistent with an idea that the saturation level of the
MRI is determined by a balance between the growth of the MRI and the dissipation of the field through
reconnection. The quantitative interpretation of the pressure-stress relation, however, may require advances in the
theoretical understanding of nonsteady magnetic reconnection.

Subject headings: accretion, accretion disks — diffusion — instabilities — MHD — turbulence

1. INTRODUCTION

Most existing models of accretion disks are based on the
� -prescription of Shakura & Sunyaev (1973). In this picture,
the physical nature of the accretion torque is unspecified,
and the radial-azimuthal component of the stress tensor, wr�,
is assumed to be a constant, � , times the pressure. Angular
momentum is supposed to be transported outward by an
‘‘anomalous viscosity.’’ The viscosity required by observed
evolution timescale is orders of magnitude greater than that
resulting from ordinary molecular viscosity. Dimensional
analysis suggests that the anomalous viscosity can be rep-
resented by �csH, where cs and H are the sound speed and
the disk scale height, respectively. The advantage of this
approach is that many of the uncertainties regarding the
accretion stress are confined in the single parameter �.

A promising physical mechanism for anomalous viscosity
is turbulence. How turbulence might be driven has been
an open question for many years. Keplerian disks satisfy
Rayleigh’s hydrodynamical stability criterion, as the specific
angular momentum increases monotonically outward. No clear

means for locally generating and sustaining hydrodynamic
turbulence has been identified. When a magnetic field is
present, however, the condition for stability is that the angular
velocity � increases outward (Chandrasekhar 1961). This
condition is usually violated in accretion disks. The presence of
a weak magnetic field leads to magnetorotational instability
(MRI; Balbus & Hawley 1991, 1998), which initiates and
sustains MHD turbulence. Numerical simulations using several
different methods have shown that Maxwell and Reynolds
stresses in the turbulence transport a significant amount of
angular momentum outward (e.g., Hawley, Gammie, & Balbus
1995, 1996; Matsumoto & Tajima 1995; Brandenburg et al.
1995). The Maxwell stress is a few times larger than the
Reynolds stress.

In magnetized accretion disks, it is likely that the rate of
angular momentum transport and the value of the � -parameter
are determined by the saturation amplitude of the turbulence
resulting from MRI. Numerical simulations indicate that the
time- and volume-averaged Maxwell stress, �BrB� /4�, in the
saturated state is usually proportional to the time- and volume-
averaged magnetic pressure, B2/8� (e.g., Hawley et al. 1995,
1996). Therefore, it is important to determine how the mag-
netic pressure depends on the gas pressure, so that we can
relate MHD calculations to the many existing studies that use
the � -prescription. The magnetic pressure is controlled by
generation and dissipation processes, and the rate of dissipa-
tion may vary with the gas pressure. The main aim of this work
is to study how stress depends on gas pressure in turbulence
driven by the MRI.

In the Shakura-Sunyaev picture, � is the ratio of the ac-
cretion stress to the gas pressure. The saturation level of the �
parameter ranges from 10�3 to 0.1 in ideal MHD simulations
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(e.g., Hawley et al. 1995, 1996). However, the important
questions of how the MRI saturates and which physical
quantities determine the saturation level have not yet been
resolved. The ultimate goal of this work is to understand the
mechanism of nonlinear saturation of the MRI, so that we can
predict the saturation level from a small number of parameters.
The first attempts to measure the parameter dependence of the
stress numerically were made by Hawley et al. (1995, 1996).
They found that the saturation level depends on the field
strength, in disks penetrated by uniform vertical fields. On the
other hand, the final state is independent of the initial field
strength if there is no net magnetic flux in the system. A single
initial gas pressure was used in all the calculations, so that the
pressure dependence of the saturation level was not addressed.
Here we extend the work of Hawley et al. (1995, 1996). We
reexamine the predictor function, explicitly considering the
pressure dependence. The calculations are run for hundreds of
orbits for accurate estimation of saturation levels.

The gas pressure dependence of the saturated stress remains
unclear. No numerical experiment has explicitly examined the
dependence. However, there is indirect evidence that higher
gas pressures may enhance the Maxwell stress. Stone et al.
(1996) carried out three-dimensional simulations of the MRI in
a vertically stratified disk using both adiabatic and isothermal
equations of state. In the adiabatic case, temperatures increase
with time as a result of dissipation of magnetic energy, while in
the isothermal version, the temperature is constant. The pres-
sures in the nonlinear regime differ substantially between the
two. The saturation level in the adiabatic run is higher than in
the isothermal run with the same initial condition, suggesting
that higher pressures may contribute to higher saturation levels
of the stress. However, the calculations include stratification,
so that buoyancy, as well as gas pressure, may affect the sat-
urated state. The effects of gas pressure are studied separately
in the present paper using the unstratified shearing box ap-
proximation (Hawley et al. 1995).

Another advantage of unstratified local simulations is that
the evolution can be followed for many orbits. Turbulence
driven by the MRI is fluctuating and chaotic (Winters, Balbus,
& Hawley 2003), and averages must be taken over long
intervals for reliable estimates of the saturation level. Most of
our simulations are integrated for a few hundred orbits, and
time averages are taken over more than 50 orbits. These
periods are long compared with previous work using similar
calculations.

The plan of this paper is as follows. The basic equations and
initial conditions are described in x 2. We make the local
shearing box approximation, in which total energy increases
over time because of the radial boundary conditions. Energy
transfer and thermalization in the shearing box are also dis-
cussed briefly in x 2. Numerical results are shown in x 3. The
parameters defining the initial condition in the local approxi-
mation are the gas pressure, the geometry and strength of the
magnetic field, the equation of state, the size of the calculation
box, and the numerical resolution. The effects of all parameters
must be understood to construct a saturation predictor function.
However, in this paper we concentrate on the gas pressure,
magnetic field, and equation of state. The remaining param-
eters will be investigated in subsequent work. The evolution of
the MRI in disks with zero and nonzero net magnetic flux is
examined in xx 3.1 and 3.2, respectively. The effects of mag-
netic dissipation are discussed in x 3.3, while x 3.4 is devoted to
general characteristics of MHD turbulence driven by the MRI.
Time variability of the turbulence and the interpretation of our

numerical results are discussed in x 4. Finally, x 5 is a brief
summary.

2. NUMERICAL METHOD

2.1. Basic Equations and Numerical Scheme

The shearing box approximation is used in our numerical
simulations because we focus on the local behavior of the
MRI in the simplest representation of accretion disks. The
vertical gravity is ignored so that all the physical quantities are
initially uniform except for the sheared velocity in the azi-
muthal direction. The equations to be solved are

@�

@t
þ v =rrr � ¼ ��rrr = v; ð1Þ

@v

@t
þ v =rrrv ¼ �rrrP

�
þ J ���� B

c�
� 26 < vþ 2q�2xx̂; ð2Þ

@�

@t
þ v =rrr� ¼ � Prrr = v

�
þ 4��J2

c2�
; ð3Þ

@B

@t
¼ rrr ���� v ���� B� 4��J

c

� �
; ð4Þ

where

J ¼ c

4�
rrr ���� Bð Þ ð5Þ

is the current density and � is the specific internal energy. The
basic equations are written in a local Cartesian frame of ref-
erence (x, y, z) corotating with the disk at angular frequency �,
where x is oriented in the radial direction, y is in the azimuthal
direction, and z is in the vertical direction. The terms�26 ���� v
and 2q�2x in the equation of motion given by equation (2) are
the Coriolis force and the tidal expansion of the effective
potential with a constant q ¼ 3=2 for a Keplerian disk, re-
spectively. The gas is assumed to be ideal, with pressure
P ¼ (� � 1)��, where � is the ratio of the specific heats. In this
paper we examine both the ideal MHD and resistive MHD
cases. The induction equation (4) includes a term for the
ohmic dissipation, where � is the magnetic diffusivity. The
energy equation (3) has the Joule heating term.
These equations are solved with the second-order Godunov-

type scheme developed by T. Sano & S. Inutsuka (2004, in
preparation). Operator splitting is used. The hydrodynamical
part of the equations is solved by a Godunov method, using the
exact solution of the simplified MHD Riemann problem. The
Riemann problem is simplified by including only the tangential
component of the field. The characteristic velocity is then that
of the magnetosonic wave alone, and the MHD Riemann
problem can be solved in a way similar to the hydrodynamical
one (Colella & Woodward 1984). The piecewise linear dis-
tributions of flow quantities are calculated with a monotonicity
constraint following van Leer’s (1979) method. The remaining
terms, the magnetic tension component of the equation of
motion and the induction equation, are solved by the MoC-CT
method (Stone & Norman 1992), guaranteeing rrr = B ¼ 0 to
within round-off error throughout the calculation (Evans &
Hawley 1988).
The accuracy of the scheme has been demonstrated by

various test problems and by calculations of the numerical
growth rate of the MRI (Sano 1998; Sano & Stone 2002a). The
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inclusion of the ohmic dissipation term in the CT method is
straightforward. For ideal MHD, the electromotive force,
v���� B, is defined at the edge of each cell. For resistive MHD,
we evaluate the current density J at the same position and
calculate a new electromotive force including the dissipation
term, ��J.

The energy equation can be solved in either the total energy
or the internal energy form. In most cases we use the conser-
vative, total energy form because it allows a more complete
analysis of the energy budget. In saturated turbulence driven by
the MRI, the main source of heating is magnetic dissipation
(Sano & Inutsuka 2001). Under nonconservative numerical
schemes, magnetic energy can be lost from the system, leading
to time increases in gas pressure that are slower than obtained
using a total energy scheme. We use the internal energy scheme
in a few models for comparing with the results of the total
energy scheme.

2.2. Initial Conditions and Normalization

In the initial equilibrium, the tidal force in the local effec-
tive potential balances the Coriolis force, and both are much
greater than magnetic forces. The relative importance of the
field is given by the ratio between the gas and magnetic
pressures, � ¼ P=Pmag ¼ (2=�)c2s=v

2
A, where cs ¼ (�P=�)1=2

and vA ¼ B=(4��)1=2 are the sound velocity and Alfvén speed,
respectively. The initial plasma beta �0 is larger than 100 for
all the models shown in this paper. The initial distribution of
the azimuthal velocity is given by vy0(x) ¼ �q�x. The uni-
form density and gas pressure are assumed to be �0 and P0,
respectively.

Because the evolution of the MRI is sensitive to whether the
net flux of the vertical field is zero or finite, we consider two
kinds of initial field geometries: a uniform vertical field
Bz ¼ B0 and a field with zero net flux, Bz(x) ¼ B0 sin (2�x=Lx).
Here Lx is the size of the shearing box in the radial direction.

The system of equations is normalized using the initial
density (�0 ¼ 1) and the angular velocity (� ¼ 10�3), follow-
ing Hawley et al. (1995). However, lengths are normalized
differently from previous studies so that the gas pressure de-
pendence of the saturation level can be examined. The local
shearing box has three possible scales of length: the pressure
scale height H0 ¼ (2=�)1=2cs0=�, the unstable wavelength of
the MRI k0 ¼ 2�vA0=�, and the size of the box. Here cs0 and
vA0 are the initial sound velocity and Alfvén speed, respectively.

While lengths in previous work are normalized by H0, we
choose the vertical height of the box Lz ¼ 1 as the unit length.
Then both the gas pressure P0 and the field strength B0

are independent parameters and determine the ratios H0/Lz and
k0/Lz, respectively. Note that the ratio of the box size to the
disk thickness H0 depends on the choice of initial gas pressure
P0 in this normalization. The radial and azimuthal sizes of
the shearing box are taken to be Lx ¼ Lz and Ly ¼ 4Lz. The
primary goal of this paper is to understand the dependence of
the saturation level on physical quantities. For this purpose, we
perform a few extreme models in which the box size exceeds
the pressure scale height of the disk, or the gas pressure
increases by 3 orders of magnitude from its initial value. Care
must be taken when applying the results to real accretion disks.

Spatially uncorrelated perturbations in the gas pressure
and azimuthal velocity are imposed at the beginning of
each calculation. The fluctuations have a zero mean value
with a maximum amplitude of 	Pj j=P0 ¼ ��1

0 and 	vj j=cs0 ¼
0:1�

�1=2
0 . The amplitude of the initial fluctuations is less than

1% because �0 � 100. Most of the calculations use a standard

grid resolution of 32 ; 128 ; 32 with uniform zoning. In the
azimuthal and vertical direction, periodic boundary conditions
are used. For the radial boundary, a sheared periodic boundary
condition (Hawley et al. 1995) is adopted.

2.3. Heating in the Shearing Box

In the shearing box, angular momentum is transported by
Maxwell and Reynolds stresses, with sum

wxy ¼ � BxBy

4�
þ �vx 	vy; ð6Þ

where 	vy � vy þ q�x is the deviation from the background
shear motion. The stress wxy is closely related to the total
energy within the box defined as

� �
Z

dV �
v2

2
þ �þ �

� �
þ B2

8�

� �
ð7Þ

(Hawley et al. 1995), where � ¼ �q�2x2 is the tidal expan-
sion of the effective potential. Using the evolution equations
for the resistive MHD system (eqs. [1]–[4]), the time deriv-
ative of the above equation gives

d�

dt
¼�

Z
dA

(
�v

v2

2
þ �þ P

�
þ �

� �

þ 1

4�
B���� (v���� B)� �B���� (rrr���� B)½ �

)

¼ q�Lx

Z
X

dA �vx 	vy �
BxBy

4�

� �

¼ q�Lx

Z
X

dAwxy; ð8Þ

where dA is the surface element and the integral is taken over
either of the radial boundaries. Thus, the rate of energy input
through the sheared periodic radial boundary is proportional to
the stress wxy at the boundary. Note that the final expression of
equation (8) does not explicitly depend on the resistivity.

If the stress wxy at the boundary is positive or the angular
momentum flux through the box is outward, the total energy of
the system increases. The source of the injected energy is the
background shear motion. In realistic disks, positive stresses
lead to inward mass accretion, bringing a loss of gravitational
energy. The gain in total energy in the shearing box represents
this energy release. The injected energy goes to the magnetic
field as a result of the growth of MRI. Magnetic energy is then
thermalized via magnetic reconnection.

In saturated turbulence, the time-averaged magnetic and
kinetic energies are nearly constant. Furthermore, the density
varies little, so that the change in potential energy �� is
negligible compared with the other terms in equation (7). All
the energy gain of the system is therefore finally deposited by
the thermal energy Eth ¼ P=(� � 1), and equation (8) can be
written as DD

Ėth

EE
¼ q�

DD
wxy

EE
; ð9Þ

where the double brackets denote time- and volume-averaged
quantities.7Thisfluctuation-dissipation relationhas been clearly

7 We also use the single brackets h f i to denote a volume average of
quantity f.
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demonstrated in numerical simulations (Sano & Inutsuka
2001). A similar relation holds in cylindrical coordinates for
the global disk problem (Balbus & Papaloizou 1999).

If cooling processes are inefficient and the stress hhwxyii is
constant, the gas pressure increases linearly with time. The
time evolution is approximately given by

P(t)h ih i ¼ P0 þ q (� � 1)� wxy

� �� �
t: ð10Þ

Assuming q ¼ 3=2 and � ¼ 5=3, the plasma � would evolve as

P(t)h ih i
Pmag

� �� � ¼ P0

Pmag

� �� � þ �
wxy

� �� �
Pmag

� �� � t
� �0

Pmag;0

Pmag

� �� �þ300
wxy

� �� �
= Pmag

� �� �
0:5

� �
t=trot
100

� �
:

ð11Þ

Here we use a relation hhwxyii=hhPmagii � 0:5 obtained in
previous numerical simulations (e.g., Hawley et al. 1995).
Equation (11) indicates that after 100 orbits, the plasma �
must be larger than a few hundred, even though the first term
on the right-hand side of equation (11) can be much smaller.

The change in gas pressure over 100 orbits can be large and
should be taken into account in analyzing the effects of gas
pressure.
In realistic situations, however, the gas pressure can be

reduced by radiative cooling or by expansion in the vertical
direction. Instead of including cooling processes, we examine
the effects of cooling simply by changing the ratio of the
specific heats �. For nearly isothermal simulations, we use
� ¼ 1:001, while � ¼ 5=3 is used for adiabatic simulations.

3. RESULTS

The nonlinear evolution of the MRI is investigated using
three-dimensional MHD simulations. Various initial con-
ditions are used to reveal the dependence of the saturation
amplitude on physical quantities such as the gas pressure.
Parameters for all the models are listed in Tables 1–3. Model
names are given in column (1). The first letter in the model
name denotes the initial field geometry. The labels of those
with zero net vertical flux contain the letter S. Models started
with a uniform Bz have a label beginning with Z. The two
numbers N1 and N2 indicate the initial field strength and the
initial plasma �, respectively. The field strength is given by
vA0 ¼ B0=(4��0)

1=2 ¼ 2(N1�7) ; 10�4 using the tens digit N1,

TABLE 1

Zero Net Flux Bz Simulations

Model

(1)

�0
(2)

P0

(3)

vA0
(4)

H0
a

(5)

k0
b

(6)

Size

(7)

�

(8)

Orbits

(9)

hhwMii=P0

(10)

hhwRii=P0

(11)

hhPii=P0

(12)

� c

(;103)
(13)

S41 ........... 102 7.8125 ; 10�9 1.25 ; 10�5 0.125 0.079 1 ; 4 ; 1 1/32 100 1.31 0.305 387 4.18

S42 ........... 104 7.8125 ; 10�7 1.25 ; 10�5 1.25 0.079 1 ; 4 ; 1 1/32 100 0.0123 0.00272 5.94 2.53

S43 ........... 106 7.8125 ; 10�5 1.25 ; 10�5 12.5 0.079 1 ; 4 ; 1 1/32 100 3.74 ; 10�4 7.02 ; 10�5 1.19 0.373

S51 ........... 102 3.125 ; 10�8 2.5 ; 10�5 0.25 0.16 1 ; 4 ; 1 1/32 300 0.611 0.121 917 0.798

S52 ........... 104 3.125 ; 10�6 2.5 ; 10�5 2.5 0.16 1 ; 4 ; 1 1/32 600 0.00799 0.00159 29.9 0.320

S53 ........... 106 3.125 ; 10�4 2.5 ; 10�5 25 0.16 1 ; 4 ; 1 1/32 300 1.21 ; 10�4 2.21 ; 10�5 1.28 0.112

S61 ........... 102 1.25 ; 10�7 5 ; 10�5 0.5 0.31 1 ; 4 ; 1 1/32 300 0.158 0.0316 259 0.731

S62 ........... 104 1.25 ; 10�5 5 ; 10�5 5 0.31 1 ; 4 ; 1 1/32 300 0.00165 3.26 ; 10�4 4.30 0.460

S63 ........... 106 1.25 ; 10�3 5 ; 10�5 50 0.31 1 ; 4 ; 1 1/32 300 4.21 ; 10�5 6.67 ; 10�6 1.10 0.0442

S71 ........... 102 5 ; 10�7 1.0 ; 10�4 1 0.63 1 ; 4 ; 1 1/32 100 0.0271 0.00569 14.4 2.27

S72 ........... 104 5 ; 10�5 1.0 ; 10�4 10 0.63 1 ; 4 ; 1 1/32 100 3.93 ; 10�4 7.89 ; 10�5 1.23 0.382

� ¼ 1:001 (Isothermal)

S51i .......... 102 3.125 ; 10�8 2.5 ; 10�5 0.25 0.16 1 ; 4 ; 1 1/32 100 0.00135 2.71 ; 10�4 1.02 1.59

S52i .......... 104 3.125 ; 10�6 2.5 ; 10�5 2.5 0.16 1 ; 4 ; 1 1/32 300 0.00313 7.89 ; 10�4 1.02 3.83

S53i .......... 106 3.125 ; 10�4 2.5 ; 10�5 25 0.16 1 ; 4 ; 1 1/32 300 1.12 ; 10�4 2.08 ; 10�5 1.01 0.132

S61i .......... 102 1.25 ; 10�7 5 ; 10�5 0.5 0.31 1 ; 4 ; 1 1/32 100 0.00856 0.00199 1.02 10.3

S62i .......... 104 1.25 ; 10�5 5 ; 10�5 5 0.31 1 ; 4 ; 1 1/32 300 0.00111 2.31 ; 10�4 1.02 1.32

S63i .......... 106 1.25 ; 10�3 5 ; 10�5 50 0.31 1 ; 4 ; 1 1/32 300 4.13 ; 10�4 6.94 ; 10�6 1.00 0.0480

� ¼ 5

S52g ......... 104 3.125 ; 10�6 2.5 ; 10�5 2.5 0.16 1 ; 4 ; 1 1/32 200 0.0151 0.00257 85.6 0.206

S62g ......... 104 1.25 ; 10�5 5 ; 10�5 5 0.31 1 ; 4 ; 1 1/32 200 0.00454 7.43 ; 10�4 28.1 0.188

Solved by an Internal Energy (Nonconservative) Scheme

S51e.......... 102 3.125 ; 10�8 2.5 ; 10�5 0.25 0.16 1 ; 4 ; 1 1/32 300 0.321 0.0727 127 3.09

S52e.......... 104 3.125 ; 10�6 2.5 ; 10�5 2.5 0.16 1 ; 4 ; 1 1/32 300 0.00475 9.61 ; 10�4 3.24 1.76

S61e.......... 102 1.25 ; 10�7 5 ; 10�5 0.5 0.31 1 ; 4 ; 1 1/32 300 0.0934 0.0197 45.9 2.46

S62e.......... 104 1.25 ; 10�5 5 ; 10�5 5 0.31 1 ; 4 ; 1 1/32 300 0.00143 2.92 ; 10�4 2.44 0.706

Notes.—Time averages are taken over the last 50 orbits. For isothermal runs, time evolutions after 50 orbits are considered for the time averages.
a H0 ¼ (2=�)1=2cs0=� ¼ (2P0=�0)

1=2=�.
b k0 ¼ 2�vA0=�.
c � ¼ (hhwMii þ hhwRii)=hhPii.
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so that the initial field is stronger as N1 is larger. The next
digit, N2, stands for the size of the initial plasma � (�0 ¼
102N2 ). Among those with the same N1, the gas pressure is
initially higher if N2 is larger.

The suffixes indicate � ¼ 1:001 ‘‘isothermal’’ (i), � ¼ 5 (g),
cases using the internal energy scheme (e), those started with a
localized field in a small part of the disk (p), and runs with a
uniform diffusivity (r) or an anomalous diffusivity (a).

Column (2) is the initial plasma beta �0. The initial gas
pressure P0 and Alfvén speed vA0 are listed in columns (3) and
(4), respectively. The scale height H0 (col. [5]) and charac-
teristic wavelength of the MRI k0 (col. [6] in Tables 1 and 2)
are calculated from P0 and vA0. In Table 3, column (6) is the
size of the magnetic diffusivity �. For all the models, we use a
shearing box of size 1 ; 4 ; 1 and a grid of 32 ; 128 ; 32
zones. Each grid cell is a cube of size � ¼ 1=32. The effects
of the box size and numerical resolution may be important
also and are discussed in a subsequent paper.

The total evolution time in units of the rotation time is listed
in column (9). In addition to model parameters, the tables
include the saturation levels of a few quantities for each
model. Time- and volume-averaged Maxwell and Reynolds
stresses (hhwMii and hhwRii) are listed in columns (10) and
(11), respectively. The time average is taken over the last
50 orbits of each calculation and given in terms of the initial
gas pressure P0. The change in the gas pressure (hhPii=P0) is
listed in column (12). The � parameter of Shakura & Sunyaev

(1973) is given by � ¼ (hhwMii þ hhwRii)=hhPii, which is
listed in column (13). Note that normalization is done using
the gas pressure in the nonlinear regime hhPii and not the
initial value P0.

3.1. Zero Net Flux Bz Models

3.1.1. Gas Pressure Dependence (Fiducial Models)

First, we consider the cases without net magnetic flux in the
disk. The initial field is purely vertical and has a sinusoidal
distribution with radius, Bz(x) ¼ B0 sin (2�x=Lx). The direc-
tion of the field is upward in x < 0 and downward in x > 0,
and its average over the entire domain is zero. The typical time
evolutions of (a) the magnetic energy, (b) the gas pressure,
(c) the Maxwell stress, and (d) the Reynolds stress are shown
in Figure 1, where time is measured in orbits trot ¼ 2�=�. The
parameters of this fiducial model (S52) are �0 ¼ 104 and
P0 ¼ 3:125 ; 10�6. The pressure scale height and the MRI
wavelength are initially H0 ¼ (2=�)1=2cs0=� ¼ 2:5 and k0 ¼
2�vA0=� ¼ 0:16, respectively. The calculation box size is
1 ; 4 ; 1, so that the vertical size corresponds to 2

5
of the scale

height of the disk H0.
The magnetic energy is amplified by the exponential growth

of the instability during the first few orbits (see Fig. 1a). Then
MHD turbulence is initiated and sustained until the end of the
calculation at 600 orbits. The initial magnetic field is purely
vertical, and the magnetic energy hB2

z=8�i=P0 � 5 ; 10�5.

TABLE 2

Uniform Bz Simulations

Model

(1)

�0
(2)

P0

(3)

vA0
(4)

H0
a

(5)

k0
b

(6)

Size

(7)

�

(8)

Orbits

(9)

hhwMii=P0

(10)

hhwRii=P0

(11)

hhPii=P0

(12)

�c

(;103)
(13)

Z13 ........ 106 1.2207 ; 10�6 1.5625 ; 10�6 1.5625 0.0098 1 ; 4 ; 1 1/32 200 0.0111 0.00227 9.26 1.45

Z14 ........ 108 1.2207 ; 10�4 1.5625 ; 10�6 15.625 0.0098 1 ; 4 ; 1 1/32 200 2.11 ; 10�4 4.04 ; 10�5 1.28 0.196

Z32 ........ 104 1.9531 ; 10�7 6.25 ; 10�6 0.625 0.039 1 ; 4 ; 1 1/32 300 0.121 0.0241 234 0.621

Z33 ........ 106 1.9531 ; 10�5 6.25 ; 10�6 6.25 0.039 1 ; 4 ; 1 1/32 100 0.00109 2.18 ; 10�4 1.59 0.823

Z42 ........ 104 7.8125 ; 10�7 1.25 ; 10�5 1.25 0.079 1 ; 4 ; 1 1/32 100 0.0385 0.00758 22.4 2.06

Z43 ........ 106 7.8125 ; 10�5 1.25 ; 10�5 12.5 0.079 1 ; 4 ; 1 1/32 100 6.67 ; 10�4 1.19 ; 10�4 1.37 0.575

Z51 ........ 102 3.125 ; 10�8 2.5 ; 10�5 0.25 0.16 1 ; 4 ; 1 1/32 100 3.63 0.599 1.54 ; 103 2.75

Z52 ........ 104 3.125 ; 10�6 2.5 ; 10�5 2.5 0.16 1 ; 4 ; 1 1/32 100 0.0347 0.00573 17.7 2.29

Z53 ........ 106 3.125 ; 10�4 2.5 ; 10�5 25 0.16 1 ; 4 ; 1 1/32 100 4.52 ; 10�4 6.71 ; 10�5 1.29 0.402

Z61 ........ 102 1.25 ; 10�7 5 ; 10�5 0.5 0.31 1 ; 4 ; 1 1/32 100 2.53 0.414 1.27 ; 103 2.31

Z62 ........ 104 1.25 ; 10�5 5 ; 10�5 5 0.31 1 ; 4 ; 1 1/32 300 0.0333 0.00511 51.1 0.752

Z63 ........ 106 1.25 ; 10�3 5 ; 10�5 50 0.31 1 ; 4 ; 1 1/32 100 4.25 ; 10�4 6.75 ; 10�5 1.23 0.399

Z72 ........ 104 5 ; 10�5 1 ; 10�4 10 0.63 1 ; 4 ; 1 1/32 100 0.00890 0.00159 5.61 1.87

Z92 ........ 104 8 ; 10�4 4 ; 10�4 40 2.5 1 ; 4 ; 1 1/32 50 . . . . . . . . . . . .

� ¼ 1:001 (Isothermal)

Z32i ....... 104 1.9531 ; 10�7 6.25 ; 10�6 0.625 0.039 1 ; 4 ; 1 1/32 100 0.0361 0.00945 1.05 43.3

Z42i ....... 104 7.8125 ; 10�7 1.25 ; 10�5 1.25 0.079 1 ; 4 ; 1 1/32 100 0.0294 0.00776 1.05 35.5

Z51i ....... 102 3.125 ; 10�8 2.5 ; 10�5 0.25 0.16 1 ; 4 ; 1 1/32 100 0.936 0.208 1.71 668

Z52i ....... 104 3.125 ; 10�6 2.5 ; 10�5 2.5 0.16 1 ; 4 ; 1 1/32 100 0.0239 0.00488 1.05 27.4

Z61i ....... 102 1.25 ; 10�7 5 ; 10�5 0.5 0.31 1 ; 4 ; 1 1/32 100 1.06 0.257 1.98 667

Z62i ....... 104 1.25 ; 10�5 5 ; 10�5 5 0.31 1 ; 4 ; 1 1/32 100 0.0190 0.00319 1.06 21.0

Z72i ....... 104 5 ; 10�5 1 ; 10�4 10 0.63 1 ; 4 ; 1 1/32 100 0.00767 0.00141 1.04 8.68

Localized Initial Field

Z62p ...... 104 1.25 ; 10�5 5 ; 10�5 5 0.31 1 ; 4 ; 1 1/32 100 0.00328 6.20 ; 10�4 2.53 1.55

Note.—Time averages are taken over the last 50 orbits.
a H0 ¼ (2=�)1=2cs0=� ¼ (2P0=�0)

1=2=�.
b k0 ¼ 2�vA0=�.
c � ¼ (hhwMii þ hhwRii)=hhPii.
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TABLE 3

Simulations Including the Ohmic Dissipation

Model

(1)

�0
(2)

P0

(3)

vA0
(4)

H0
a

(5)

�0
b

(6)

Size

(7)

�

(8)

Orbits

(9)

hhwMii=P0

(10)

hhwRii=P0

(11)

hhPii=P0

(12)

�c

(;103)
(13)

S51r ......... 102 3.125 ; 10�8 2.5 ; 10�5 0.25 10�7.5 1 ; 4 ; 1 1/32 300 0.521 0.104 633 0.987

S52r ......... 104 3.125 ; 10�6 2.5 ; 10�5 2.5 10�7.5 1 ; 4 ; 1 1/32 300 0.00591 0.00119 11.2 0.635

S53r ......... 106 3.125 ; 10�4 2.5 ; 10�5 25 10�7.5 1 ; 4 ; 1 1/32 150 1.27 ; 10�4 2.27 ; 10�5 1.12 0.134

S62r ......... 104 1.25 ; 10�5 5 ; 10�5 5 10�7.5 1 ; 4 ; 1 1/32 300 0.00141 2.81 ; 10�4 3.98 0.424

S51a......... 102 3.125 ; 10�8 2.5 ; 10�5 0.25 Anomalous 1 ; 4 ; 1 1/32 300 0.447 0.0905 624 0.862

S52a......... 104 3.125 ; 10�6 2.5 ; 10�5 2.5 Anomalous 1 ; 4 ; 1 1/32 300 0.00598 0.00121 8.65 0.832

S53a......... 106 3.125 ; 10�4 2.5 ; 10�5 25 Anomalous 1 ; 4 ; 1 1/32 150 9.60 ; 10�5 1.78 ; 10�5 1.09 0.105

S62a......... 104 1.25 ; 10�5 5 ; 10�5 5 Anomalous 1 ; 4 ; 1 1/32 300 0.00170 3.37 ; 10�4 4.21 0.484

Z32r......... 104 1.9531 ; 10�7 6.25 ; 10�6 0.625 10�7.5 1 ; 4 ; 1 1/32 300 0.167 0.0321 234 0.848

Z51r......... 102 3.125 ; 10�8 2.5 ; 10�5 0.25 10�6 1 ; 4 ; 1 1/32 100 1.08 0.198 529 2.42

Z52r......... 104 3.125 ; 10�6 2.5 ; 10�5 2.5 10�6 1 ; 4 ; 1 1/32 100 0.0138 0.00254 7.34 2.22

Z53r......... 106 3.125 ; 10�4 2.5 ; 10�5 25 10�6 1 ; 4 ; 1 1/32 100 3.01 ; 10�4 4.92 ; 10�5 1.14 0.307

Z62r......... 104 1.25 ; 10�5 5 ; 10�5 5 10�6 1 ; 4 ; 1 1/32 300 0.0254 0.00428 37.7 0.788

Z32a ........ 104 1.9531 ; 10�7 6.25 ; 10�6 0.625 Anomalous 1 ; 4 ; 1 1/32 300 0.0952 0.0187 170 0.669

Z51a ........ 102 3.125 ; 10�8 2.5 ; 10�5 0.25 Anomalous 1 ; 4 ; 1 1/32 100 1.98 0.373 1.06 ; 103 2.22

Z52a ........ 104 3.125 ; 10�6 2.5 ; 10�5 2.5 Anomalous 1 ; 4 ; 1 1/32 100 0.0217 0.00397 13.1 1.96

Z53a ........ 106 3.125 ; 10�4 2.5 ; 10�5 25 Anomalous 1 ; 4 ; 1 1/32 100 3.86 ; 10�4 6.51 ; 10�5 1.22 0.371

Z62a ........ 104 1.25 ; 10�5 5 ; 10�5 5 Anomalous 1 ; 4 ; 1 1/32 300 0.0197 0.00363 34.4 0.677

� ¼ 1:001 (Isothermal)

S52ir ........ 104 3.125 ; 10�6 2.5 ; 10�5 2.5 10�7.5 1 ; 4 ; 1 1/32 300 0.00230 5.98 ; 10�4 1.02 2.84

S52ia ....... 104 3.125 ; 10�6 2.5 ; 10�5 2.5 Anomalous 1 ; 4 ; 1 1/32 300 0.00211 5.53 ; 10�4 1.02 2.62

Z52ir........ 104 3.125 ; 10�6 2.5 ; 10�5 2.5 10�6 1 ; 4 ; 1 1/32 100 0.0112 0.00247 1.01 13.5

Z52ia ....... 104 3.125 ; 10�6 2.5 ; 10�5 2.5 Anomalous 1 ; 4 ; 1 1/32 100 0.0195 0.00428 1.04 22.9

Notes.—Time averages are taken over the last 50 orbits. For isothermal runs, time evolutions after 50 orbits are considered for the time averages.
a H0 ¼ (2=�)1=2cs0=� ¼ (2P0=�0)

1=2=�.
b A uniform and constant diffusivity �0 or an anomalous diffusivity is used. The anomalous diffusivity is assumed to be � ¼ k0(vd � vd0)

2 with k0 ¼ 0:05 and
vd0 ¼ 0:05.

c � ¼ (hhwMii þ hhwRii)=hhPii.

Fig. 1.—Time evolution of the volume-averaged (a) magnetic energy hB2
i =8�i=P0, (b) gas pressure hPi=P0, (c) Maxwell stress h�BxBy=4�i=P0, and (d) Reynolds

stress h�vx	vyi=P0 in the fiducial model S52. The plasma � and gas pressure are initially �0 ¼ 104 and P0 ¼ 3:125 ; 10�6, respectively. Time averages of the
Maxwell stress over 50 orbit intervals are indicated by circles and show a gradual increase with time.



The saturated amplitude hB2=8�i=P0 � 5 ; 10�2 is greater by
about 3 orders of magnitude. In the saturated turbulence, the
azimuthal component of the magnetic pressure dominates the
other components by an order of magnitude. The ratios of
each component (hhB2

yii=hhB2
z ii � 20 and hhB2

xii=hhB2
z ii � 3)

are nearly constant during the turbulent phase.
The gas pressure, on the other hand, continues to increase

throughout the evolution (see Fig. 1b) because no cooling
processes are included in the energy equation. The main
source of heating is the dissipation of magnetic fields (Sano &
Inutsuka 2001). The volume-averaged gas pressure at 300
orbits, hPi=P0 � 12, is much larger than the magnetic pressure
in the saturated turbulent state, hPmagi=P0 � 0:01. The mag-
netic energy is almost saturated while the gas pressure is in-
creasing, and thus the ratio between the magnetic and gas
pressure � ¼ P=Pmag increases with time throughout the
calculation.

The efficiency of angular momentum transport is given by
the radial-azimuthal (x-y) component of the stress tensor wxy .
The time evolutions of the Maxwell (wM � �BxBy=4�) and
Reynolds stress (wR � �vx 	vy) are shown in Figures 1c and
1d, respectively. As is shown in previous work (e.g., Hawley
et al. 1995, 1996), the Maxwell stress always dominates the
Reynolds stress by a factor of about 5. The stress fluctuates
with time, but the amplitude of the time variation is much
smaller than in cases started with a uniform Bz (Sano &
Inutsuka 2001; see x 4.1). Although the Maxwell and Reynolds
stresses are nearly saturated in the nonlinear regime, the
long-term evolution shows a gradual increase. To clarify this
trend, we take the time average of the Maxwell stress every
50 orbits, depicted in Figure 1c by circles. A slight positive
slope can be seen in the evolution of the time-averaged
Maxwell stress. Hereafter, we focus on this gradual increase of
the stress.

During the nonlinear turbulent phase, both the gas pressure
and the Maxwell stress increase with time. Thus, it may be
interesting to examine the correlation between these two
quantities. In Figure 2a, the volume-averaged Maxwell stress
is plotted as a function of the volume-averaged gas pressure.
The models shown in this figure are S51, S52, and S53.
Parameters for the three models are identical except for the
initial gas pressure P0.

Each model evolves toward the upper right on this diagram
because both the gas pressure and stress increase with time.
Note that the horizontal axis can be regarded as time. The
increase of the gas pressure is significant when the initial
value is low. For the lowest P0 model (S51), the gas pressure
at the end of the calculation is about 3 orders of magnitude
larger than P0. The evolutionary track of model S51 almost
overlaps with that of S52 in the later stages. The gas pressure
in the highest P0 model (S53) is nearly constant because the
initial plasma � is very large (�0 ¼ 106) for this model. The
saturation level of the Maxwell stress in S53 is time inde-
pendent and slightly higher than in the other two models.
Figure 2a shows that higher gas pressure is associated with
larger stress.

Figure 2b is the same diagram as Figure 2a, but the volume-
and time-averaged values are plotted instead of the volume
averages. Models S51, S52, and S53 are shown by circles,
triangles, and squares, respectively. The time average is taken
over every 50 orbits after 50 orbits. Obviously a power-law
relation between the gas pressure and stress appears. The
power-law index q of hhwMii / hhPiiq is about 1

4
; that is, the

Maxwell stress is roughly proportional to P1/4.

In previous work on the nonlinear development of the MRI,
the initial gas pressure is usually used to normalize the stress.
However, as seen from Figure 2, the gas pressure can increase
by many orders of magnitude during the nonlinear evolution,
and the stress depends on the gas pressure in the nonlinear
regime. Thus, when analyzing long-term calculations, it may
be better to normalize the stress by the gas pressure averaged
over the same time interval.

The short-term variability of MRI-driven turbulence is
chaotic (Winters et al. 2003). However, averaging over a
longer period of 50 orbits reveals a power-law relation be-
tween hhPii and hhwMii. To find how long an averaging period
is needed, we performed two versions of calculation S52,
using different spatial distributions of the initial perturbations.
The time evolutions of the Maxwell stress differ. However, the
stress averaged over 50 orbit periods follows the same track,
shown by the dotted line in Figure 2b. Therefore, 50 orbits
may be a long enough averaging period when examining the
long-term evolution.

3.1.2. Independence of the Initial Field Strength

The power-law relation between the gas pressure and stress
is found to be independent of the initial field strength. Figure 3
shows the saturation level of the Maxwell stress including
models started with initial fields of different strengths. Models
S41–S43 (circles) have B0 half as strong as the fiducial
ones (S51–S53), which are shown by triangles. The squares

Fig. 2.—(a) Time evolution of the volume-averaged Maxwell stress
h�BxBy=4�i as a function of the volume-averaged gas pressure hPi for models
S51 (dotted curve), S52 (dashed curve), and S53 (solid curve). The parameters
of these models are identical except for the initial gas pressure. (b) Time
evolution of the time- and volume-averaged Maxwell stress hh�BxBy=4�ii as
a function of the time- and volume-averaged gas pressure hhPii for models
S51 (circles), S52 (triangles), and S53 (squares). The time averages are taken
over every 50 orbits after 50 orbits. The Maxwell stresses obtained are roughly
proportional to P1/4.
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(S61–S63) and crosses (S71 and S72) are those with fields 2
and 4 times stronger than the fiducial runs, respectively. The
initial � value is 102, 104, or 106 for each B0 case, so that the
initial gas pressures differ (see Table 1). All the parameters
other than B0 and P0 are identical for all the models shown in
Figure 3. The time averages of the Maxwell stress are taken
over the last 50 orbits of each calculation.

As seen from the figure, all the models follow the same
evolutionary track on this diagram. The saturated stress is
independent of both the initial field strength B0 and the initial
gas pressure P0 . This means that information about the initial
conditions is lost in the nonlinear regime. The time-averaged
stress can be fitted by a simple function of the time-averaged
gas pressure in the nonlinear regime hhPii. The power-law
index is about 1

4
and the best fit is q ¼ 0:28 among all the

models in Figure 3.
Note that if the stress is plotted against the initial gas

pressure, then no clear correlation is seen. The saturation level
of the stress normalized by the initial pressure widely ranges
from 10�5 to unity (see Table 1). The gas pressure at the end
of the calculation is 2–3 orders of magnitude larger than P0

for the cases with �0 relatively small. Thus, the choice of
the normalization, P0 or hhPii, makes a huge difference in
the normalized stress. Column (13) of Table 1 lists the total
stress divided by the pressure in the nonlinear regime, � �
(hhwMii þ hhwRii)=hhPii. The amplitude of the � parameter
ranges typically from 10�3 to 10�4 with this normalization.

3.1.3. Effects of the Equation of State

In this subsection the effects of the equation of state are
examined. We assume � ¼ 5=3 in all the models shown in
Figure 3, and thus the thermal energy and gas pressure in-
crease monotonically with time. In realistic systems, however,

cooling processes can modify the temperature of the disks.
Instead of implementing cooling terms in numerical simu-
lations, we demonstrate the effects of cooling processes sim-
ply by changing the ratio of the specific heats �. Nearly
isothermal models with � ¼ 1:001 are listed in Table 1. In
general, the Maxwell stress in the isothermal run is smaller
than that in the adiabatic run. For example, the saturation level
of the Maxwell stress for model S52i is hhwMii=P0 ¼ 0:0031,
which is less than half of that for the adiabatic counterpart
S52. For model S52, the gas pressure at the end of the cal-
culation is 30 times larger than P0. The difference in the
stresses may be due to an effect of the enhanced gas pressure.
The saturation levels of the Maxwell stress in models S52i,

S53i, S62i, and S63i are shown in Figure 4 as a function of the
gas pressure. The gas pressure in these models is unchanged
throughout the calculation so that always hhPii � P0. In
contrast to the adiabatic models, the time-averaged stress in
the isothermal models is found to be almost constant with
time. The time average is taken from 50 to 300 orbits, and
the error bars in the figure show the dispersions of time
averages taken every 50 orbits. The dotted line in the figure
is the hhPii-hhwMii relation obtained from the adiabatic runs
(Fig. 3).
The isothermal runs with the higher initial pressure P0 have

larger saturation amplitude in the stress. Furthermore, the
relation between hhwMii and P0 in the isothermal runs is ex-
actly the same as the hhPii-hhwMii relation in the adiabatic
calculations. This fact indicates that the pressure-stress rela-
tion is robust and unrelated to the time-dependent behavior of
the shearing box.
It is worth noticing that the horizontal axis of Figure 4 is

�P. In terms of the comparison with incompressible MHD

Fig. 3.—Dependence of the time-averaged Maxwell stress hh�BxBy=4�ii on
the time-averaged gas pressure hhPii in the nonlinear regime. Symbols indicate
different initial field strengths. Circles are from models with initial Alfvén
speed vA0 ¼ 1:25 ; 10�5 (S41–S43), triangles vA0 ¼ 2:5 ; 10�5 (S51–S53;
fiducial), squares vA0 ¼ 5 ; 10�5 (S61–S63), and crosses vA0 ¼ 1 ; 10�4

(S71 and S72). The time average is taken over the last 50 orbits for each model.
All the results are well fitted by a power-law relation hh�BxBy=4�ii / hhPiiq.
The power-law index q is about 1

4
(dotted line) and the best fit is q ¼ 0:28 (solid

line).

Fig. 4.—Dependence of the time-averaged Maxwell stress hh�BxBy=4�ii
on hh�Pii in the nonlinear regime. The isothermal models with � ¼ 1:001 are
shown by red symbols; from left to right, they are models S52i, S62i, S53i, and
S63i. For each model, the time average is taken from 50–300 orbits and the
error bar denotes the dispersion calculated from the time averages taken every
50 orbits. Blue symbols are results of the � ¼ 5 models, S52g (triangles) and
S62g (squares). The time average is calculated every 50 orbits after 50 orbits.
The � ¼ 5=3 models are shown by black symbols with meanings as in Fig. 3.
A dotted line shows hhwMii / hh�Pii1=4 as inferred from the models with
� ¼ 5=3.
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turbulence, the dependence on � has an important meaning.
The dependence on the gas pressure is very weak and the
difference in � between the adiabatic (� ¼ 5=3) and isothermal
(� ¼ 1:001) models is quite small. Therefore, it is difficult to
distinguish the dependence on P and �P. To see the difference
more clearly, we consider rather extreme cases with � ¼ 5
(S52g and S62g), which are shown by blue symbols in the
figure. Except for �, their model parameters are identical to
S52 and S62, respectively. For each model, three time aver-
ages over successive 50 orbit periods are shown. Although
the range in the gas pressure is not so wide, a net increase of
the saturation level with time can be seen in both models. If
�P is used as the horizontal axis, the time-averaged stress in
S52g and S62g is closer to the fitting function of the � ¼ 5=3
runs (dotted line). To verify the � dependence, however,
calculations with larger � are needed. As expected from
equation (10), the increase in the gas pressure is faster if � is
larger. Thus, calculations with large � are difficult to perform
using a time-explicit numerical scheme because the time step
(/�/cs) becomes small. Although the saturation level of the
stress may depend on �P, hereafter in this paper we use the gas
pressure as the horizontal axis in similar diagrams. Direct
comparison with incompressible MHD turbulence driven by
the MRI may be interesting but is beyond the scope of this
paper.

3.1.4. Constraint on Numerical Resolution

In this subsection we examine the numerical resolution
needed to obtain a correct pressure-stress relation. Because the
magnetic energy is proportional to the Maxwell stress in MHD
turbulence, the same dependence on the gas pressure can be
seen in hhB2

z=8�ii. The saturation level of the vertical magnetic
energy is shown in Figure 5. The dotted line indicates a fitting
function obtained from all the adiabatic (� ¼ 5=3) models
shown in Figure 3. Filled circles in Figure 5 denote the iso-
thermal models S51i, S61i, S52i, and S62i from left to right.
The saturation level of models S52i and S62i is on the dotted
line. However, the lower pressure models (S51i and S62i) are
located far below the predicted line. MHD turbulence in these
two models decays in the late stages of the evolution, and the
magnetic energy decreases with time.

Because the density is almost uniform even in the nonlinear
regime, the volume-averaged magnetic energy can be regarded
as the rms of the MRI wavelength,

k2MRI

� �1=2¼ 2�
v2Az
� �1=2

�
¼ 2�

�

B2
z

� �
4��0

� �1=2

: ð12Þ

Throughout the paper the MRI wavelength is calculated from
the vertical component of the magnetic field because the
fastest growing mode of the MRI, the axisymmetric mode, is
characterized by the vertical field strength. The rms of the
MRI wavelength is shorter when the gas pressure is lower, if
the saturation level of the magnetic energy is proportional to
P1/4. The numerical resolution in terms of the MRI wavelength
is then poorer at lower gas pressures. The gap between models
S61i and S52i suggests that there is a minimum resolution at
which the correct hhPii-hhwMii relation is obtained.

The horizontal dot-dashed line in Figure 5 indicates where
the rms of the MRI wavelength is six grid zones. Therefore,
the MRI wavelength must be resolved by at least six grid
zones to avoid the decay of MHD turbulence due to numerical
diffusion and to obtain the predicted saturation level. If

hhk2MRIii
1=2P 6�, the characteristics of the turbulence are

quite different from those in well-resolved models. For ex-
ample, the Reynolds stress in models S51i and S61i is larger
than the Maxwell stress, while the Maxwell stress dominates
the Reynolds stress in all the other models (see Table 1). This
can also be seen when the ohmic dissipation is effective
(Fleming, Stone, & Hawley 2000; Sano & Stone 2002b). The
condition on numerical resolution may be useful not only for
the local shearing box simulations but also for global disk
simulations.

Figure 5 includes results obtained using a different numer-
ical scheme. Open squares are from models S51e, S61e, S52e,
and S62e, which are solved using an internal energy scheme
that does not conserve total energy. The thermal energy
increases more slowly as a result of energy losses from the
system. For example, the gas pressure in models S52 and S52e
at 300 orbits is hhPii=P0 ¼ 30 and 3, respectively. However,
the hhPii-hhwMii relation is found to be unchanged, i.e.,
independent of the type of numerical scheme. The saturation
level of the stress in the models solved by the internal energy
scheme is always slightly smaller than the results of the total
energy scheme (see Table 1). However, the difference can be
explained clearly by the difference in gas pressure, if the
power-law relation is taken into account.

Further evidence of the resolution limit can be seen in the
time evolution of model S51e. Because this model is solved
by the nonconservative scheme, the increase of the gas pres-
sure is slow. Crosses in the figure mark the time averages for
model S51e that are taken over every 50 orbits after 50 orbits.
When the gas pressure is low and the predicted saturation
level is below the resolution limit, the magnetic energy is

Fig. 5.—Saturation level of the vertical component of the magnetic energy
hhB2

z=8�ii as a function of the gas pressure hhPii. Models solved with � ¼
1:001 (isothermal) are depicted by filled circles (from left to right, S51i, S61i,
S52i, and S62i). Open squares mark results using the internal energy scheme
(from left to right, S51e, S61e, S52e, and S62e). The time average is taken
over the last 50 orbits for each model. Crosses show the time evolution of the
time-averaged Maxwell stress in model S51e. The time averages extend over
50 orbit periods beginning at 50 orbits. A dotted line shows the predicted
saturation level obtained from the models shown in Fig. 3. On the dot-dashed
line, the rms of the MRI wavelength hhk2MRIii

1=2 � 2�(hhB2
z ii=4��0)

1=2=� is
equal to six grid zones. Below this limit, saturation levels lie far below the
predicted line.
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much lower than the dotted line. However, as the gas pressure
increases and the predicted level exceeds the limit, the time-
averaged magnetic energy starts to follow the predicted dotted
line. This behavior indicates that we need at least about six
grid zones per MRI wavelength to resolve MHD turbulence
driven by the MRI.

3.2. Uniform Bz Models

The effects of the field geometry are examined in this
section. The magnetic field structures in accretion disks are
difficult to observe and remain poorly known. Therefore, it is
important to survey different possible field geometries and
understand the effects on the nonlinear evolution of the MRI.
If the disk is penetrated by a dipole field of the central object
or by a global field of the surrounding interstellar medium,
there may be a net vertical flux. Here we consider models
beginning with a uniform vertical field. The vertical flux is
conserved in the shearing box, so that a seed field for the MRI
is always present if it is present initially. Previous numerical
work (Hawley et al. 1995, 1996; Sano & Stone 2002b) has
shown that the existence of a net vertical flux greatly affects the
nonlinear evolution of the MRI. For example, the saturation
level of the stress depends on the strength of the uniform
field, although the quantitative relation is not confirmed yet.
The stress is reported to be proportional to Bz (Hawley et al.
1995) and to B2

z (Sano, Inutsuka, & Miyama 1998; Turner
et al. 2003). Because the saturation amplitude may depend on
several physical quantities simultaneously, it is necessary to
understand all the effects in order to extract the separate
contributions of the field strength and gas pressure. Therefore,
we scrutinize the dependence of the saturation amplitude
on the physical quantities, as well as the effects of the field
geometry.

3.2.1. Gas Pressure Dependence

First, there is a weak power-law relation between the gas
pressure and the Maxwell stress for uniform Bz models. The
relation is very similar to that seen in the zero net flux models.
In Figure 6 the saturation level of the Maxwell stress is shown
as a function of the gas pressure. Colors denote the initial field
strength, which is, from weaker to stronger, vA0 ¼ 1:5625 ;
10�6 (black), 6:25 ; 10�6 (cyan), 1:25 ; 10�5 (blue), 2:5 ;
10�5 (green), 5 ; 10�5 (red), and 1 ; 10�4 ( pink). The circles
are from the adiabatic (� ¼ 5=3) models, and the squares are
from the isothermal (� ¼ 1:001) models. Cases with the same
initial field strength can be compared to extract the gas pres-
sure dependence alone. Look at the vA0 ¼ 2:5 ; 10�5 models
(green), for instance. The parameters of these five models are
identical except for the initial gas pressure. The saturation
level of the stress shows a weak dependence on P. The power-
law index is about 1

6
and is smaller than that in the zero net

flux runs.
For purposes of comparison, the pressure-stress relation of

the zero net flux models is shown by the solid line in the
figure. All the results from the uniform Bz models lie above the
solid line; that is, the saturation level is always higher than in
the zero net flux models. A power-law relation can be seen for
the other vA0 models as well. The power-law index is slightly
smaller than, or comparable to, that of the zero net flux
models.

Figure 6 includes the isothermal cases. In general, the sat-
uration level of the stress in the isothermal models is a few
times smaller than in the adiabatic counterparts. Because of

the large stress, the increase of the gas pressure is dramatic
in the adiabatic models (see eq. [10]). For model Z51, for
example, the gas pressure at the end of the calculation is 3
orders of magnitude higher than the initial value. The gas
pressure in the nonlinear regime is many times larger than
in the isothermal model (Z51i). Therefore, the Maxwell
stress with respect to hhPii (i.e., the � parameter) has a huge
difference between the adiabatic and isothermal runs, � �
2:8 ; 10�3 in Z51 while � � 0:67 in Z51i. For the uniform Bz

cases, the � parameter ranges widely from 10�4 to 1 (see
Table 2). The magnitude of the plasma � is approximately
given by the inverse of the � parameter. The plasma � values
in the nonlinear regime span a wide range, from 10 to 105, and
there is no characteristic amplitude.

3.2.2. Dependence on the Initial Field Strength

As is expected, the saturation level of the stress is larger for
stronger initial fields. Since the stress has a dependence on the
gas pressure, as well as the field strength, both effects should
be taken into account at the same time. From the results
shown in Figure 6, the saturation level of the Maxwell stress is
approximately given by hhwMii / hhPii1=6v3=2A0 using the gas
pressure in the nonlinear regime hhPii and the initial field
strength vA0. This is plotted in the figure by dotted lines for
models Z4* (blue), Z5* (green), and Z6* (red). Here Z4*,
Z5*, and Z6* denote all the models with a uniform field of
vA0 ¼ 1:25 ; 10�5, 2:5 ; 10�5, and 5 ; 10�5, respectively.
For example, Z6* includes Z61, Z62, Z63, Z61i, and Z62i.
The relation shown by each dotted line is valid only for one
value of the initial field strength. We find that there is an upper
and a lower limit to the saturation level for the uniform Bz

Fig. 6.—Saturation level of the Maxwell stress in the models started
with uniform vertical magnetic fields. The colors of the symbols denote
the strengths of the initial fields: vA0 ¼ B0=(4��0)

1=2 ¼ 1:5625 ; 10�6 (black),
6:25 ; 10�6 (cyan), 1:25 ; 10�5 (blue), 2:5 ; 10�5 (green), 5 ; 10�5 (red),
and 1 ; 10�4 ( pink). The adiabatic runs are shown by circles and the iso-
thermal runs by squares. The cross is the result of model Z62p, which is
started with a localized vertical magnetic field in the region �0:25 < x < 0:25
and �1 < y < 1. The total magnetic flux of this model is the same as Z42
(blue), while the field strength is the same as Z62 (red). A solid line shows the
pressure-stress relation (wM / P1=4) for the zero net flux Bz models, and dotted
lines are fitted functions for models Z4*, Z5*, and Z6*, with wM / P1=6.

SANO ET AL.330 Vol. 605



runs. The precise dependence on the field strength is difficult
to measure because of the small range between the limits. The
origins of the limits are discussed in the next subsection.

We perform an additional numerical experiment to dem-
onstrate the importance of the amount of net magnetic flux. So
far the initial field is assumed to be uniform everywhere in the

computational domain. However, model Z62p has an initially
uniform field that is localized within a small part of the
domain. At the beginning, the magnetic field is confined to
�0:5 < x < 0:5 and �1 < y < 1 and fills one-quarter of the
volume of the box. The field strength and the other parameters
are exactly the same as model Z62. The time evolution of the

Fig. 7.—Magnetic fields in model Z62p, on x-z slices at y ¼ 0. The model is started with a localized vertical field, uniform in �0:5 < x < 0:5 and �1 < y < 1.
Colors show the logarithm of magnetic pressure, and arrows the strength and direction of the poloidal magnetic field. The MRI enlarges the magnetized region, and
after a few orbits the entire domain is turbulent.
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magnetic energy density is illustrated in Figure 7 by a slice in
the x-z plane at y ¼ 0. The radial pattern at 2 orbits (Fig. 7, top
right panel ) is formed as a result of the background shear
motion, but the field is still confined within �0:5 < x < 0:5.
Then the magnetized region starts to spread in the radial di-
rection as a result of the MRI. The most unstable wavelength
is 0.31 in this case, so that the characteristic wavelength at
3 orbits (middle right panel ) is consistent with the prediction
of the linear analysis. When the generated horizontal field
reaches nonlinear amplitude, the linear growth of the MRI is
disrupted by magnetic reconnection. Through diffusion ef-
fects, the mass fraction of the magnetized region increases.
Finally, at 3.5 orbits (bottom left panel) the whole domain is
filled with amplified magnetic field and becomes turbulent.
The turbulence is sustained throughout the calculation.

The saturation level of the Maxwell stress in model Z62p is
indicated by the red cross in Figure 6. The initial field strength
in this model is the same as in models Z6* (red ), while the
total magnetic flux is equal to that of models Z4* (blue). The
stress in Z62p is much smaller than in models Z6* and
comparable to models Z4*. Thus, the key quantity of the
uniform vertical field is its total flux, or average strength over
the entire system. This simple numerical experiment yields
two interesting results. First, if even a small part of the disk
has a magnetic field, the field can spread as a result of the
shear motion of the disk and the growth of the MRI. Second,
the saturation amplitude is determined by the total vertical flux.

3.2.3. Upper and Lower Limit of the Saturation Level

In general, saturation levels are higher for larger vertical
magnetic fluxes. However, this relation has an upper and a
lower limit. Figure 8 shows the time evolution of the magnetic
energy for models Z32 (vA0 ¼ 6:25 ; 10�6), Z62 (vA0 ¼
5 ; 10�5), and Z92 (vA0 ¼ 4 ; 10�4). The initial magnetic
field in model Z32 is 4 times weaker than in Z62 and 16 times
weaker than in Z92. The field is amplified by many orders of

magnitude in the lower B0 models (Z32 and Z62). The mag-
netic energies in Z62 are greater than in Z32, both initially and
in the nonlinear regime. On the other hand, no amplification is
seen in model Z92. The reason for this behavior is explained
as follows.
The shortest unstable wavelength of the MRI, or critical

wavelength, is proportional to the Alfvén speed. The critical
wavelength is longer for stronger initial fields. When the
critical wavelength exceeds the disk scale height, linear
growth of the MRI can no longer be expected. This gives the
upper limit to the field strength. The critical wavelength in
model Z92 is initially longer than the vertical size of the box:
kcrit ¼ k0=

ffiffiffi
3

p
� 1:4 > Lz. The model is magnetorotationally

stable because the magnetic tension suppresses the linear
growth of the MRI. Model Z92 (dotted line) shows no growth
in the magnetic energy.
The volume-averaged magnetic energy in model Z62 fluc-

tuates greatly with time. The amplitude is almost an order of
magnitude. The fluctuations are a typical feature of calcu-
lations with a net vertical magnetic flux. During the saturated
turbulent phase, field amplification due to the growth of a
channel solution occurs quasi-periodically and is followed by
dissipation through magnetic reconnection (Sano & Inutsuka
2001). In weaker B0 models, on the other hand, the two-
channel flow appears less often, and the time variations are of
smaller amplitudes. If the net vertical flux is less than a critical
value, the saturation level of the stress approaches that of the
zero net flux results.
In Figure 6 the pressure-stress relation obtained from the

zero net flux runs is shown by a solid line. The field strength
in models Z3* (cyan) is half that in models Z4* (blue). The
field in models Z1* (black) is 8 times weaker than in models
Z4*. However, the differences in the stress are small, and the
weaker field results are almost on the solid line. This fact
suggests that the saturation amplitude of the zero net flux runs
gives the minimum level. The recurrent growth of the channel
flow enhances the saturation level of the stress when the disk
has a vertical flux. The enhancement is seen only when the
field strength is large enough that the initial MRI wavelength
k0 corresponds to at least several percent of the system size.
The two-channel flow appears if the vertical field is am-

plified such that the MRI wavelength corresponds to the
vertical box size. The vertical field must be amplified by a
larger factor to produce the channel flow if the initial field is
weaker. Thus, the appearance of the two-channel flow is rarer
in the weaker initial field models. Within the region of pa-
rameter space we explored, the zero net flux models and the
weak uniform field models show the same level of saturation
in the Maxwell stress. For those models, the power-law index
in the pressure-stress relation is about 1

4
.

If the MRI wavelength of the initial uniform field is longer
than about one-tenth of the vertical box size, the appearance of
the two-channel flow enhances the saturation level of the
stress. In this parameter regime, the saturation amplitude
is roughly proportional to B3=2

0
, and the power-law index is

slightly smaller (�1
6
). The upper limit on the saturation level is

given by a condition that the MRI wavelength corresponding to
the uniform vertical field should be smaller than the vertical
domain size.
Even in cases with the most unstable wavelength initially

less than the grid size (e.g., model Z13), the longer wave-
length unstable modes can be resolved. Furthermore, the
characteristic wavelength in the nonlinear stage is longer be-
cause of the amplification of the field. Thus, the resolution

Fig. 8.—Time evolution of the magnetic energy in uniform Bz models Z32
(vA0 ¼ 6:25 ; 10�6), Z62 (vA0 ¼ 5 ; 10�5), and Z92 (vA0 ¼ 4 ; 10�4). The
magnetic field in model Z92 is so strong that the MRI wavelength is longer
than the box size. The saturation level and time variability in model Z62 are
much larger than in Z32. The large spike-shaped variations are due to the
recurrent appearance and breakup of the two-channel flow.
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condition discussed in x 3.1.4 is satisfied in the saturated state
in all the models shown in Figure 6.

3.3. Effects of Magnetic Dissipation

Dissipation of the magnetic field may play an important role
in determining the saturation level of the MRI because mag-
netic reconnection occurs frequently during the saturated
turbulent phase. The ideal MHD approximation is made in all
the calculations listed in Tables 1 and 2. As a result of nu-
merical diffusion, magnetic reconnection occurs even in the
ideal MHD simulations. In this section we briefly examine the
effects of physical dissipation. The ohmic dissipation term is
explicitly included when solving the induction equation. Two
types of resistivity are considered: a time-constant and spa-
tially uniform value � ¼ �0, and an anomalous resistivity. The
anomalous diffusivity adopted varies as � ¼ k0(vd � vd0)

2 for
vd > vd0 and � ¼ 0 for vd < vd0, where vd � Jj j=� is the drift
velocity and k0 and vd0 are parameters. This prescription is
based on the idea that current-driven instabilities enhance the
effective diffusivity and has been used in many astrophysical
simulations (e.g., Yokoyama & Shibata 1994; Machida &
Matsumoto 2003).

Table 3 lists the resistive models, including both those with
zero net flux and those with uniform vertical initial fields. The
size of the ohmic dissipation is indicated by the magnetic
Reynolds number ReM ¼ VL=�, where V and L are typical
velocity and length scales, respectively. For the MRI, typical
scales are the Alfvén speed V � vA and the most unstable
wavelength L � vA=�. The magnetic Reynolds number is then
ReM ¼ v2A=��. Linear and nonlinear evolution of the MRI is
characterized very well using the parameter ReM (Sano &
Miyama 1999; Sano & Stone 2002b).

Dissipation effects are better resolved for larger �. However,
ohmic dissipation suppresses the MRI if the diffusivity is too
large. The critical value of the initial magnetic Reynolds
number is about 10 for zero net flux cases (Sano & Stone
2002b). Actually, MHD turbulence dies away in 100 orbits
when a uniform diffusivity is added to models S51 and S52
with �0 ¼ 10�7, corresponding to ReM ¼ 6:3. Therefore, we
choose �0 ¼ 10�7:5 (ReM ¼ 20) for the uniform diffusivity in
zero net flux models. For uniform Bz cases, on the other hand,
the critical ReM is about unity (Sano & Stone 2002b). Thus,
the diffusivity for models Z51r, Z52r, Z53r, and Z52ir is as-
sumed to be 10�6, corresponding to ReM ¼ 0:63. For cases
with anomalous diffusivity, we take k0 ¼ 0:05 and vd0 ¼ 0:05
because the mean value of � in the nonlinear regime in regions
with vd > vd0 is then a few times 10�8 in the zero net flux
models and a few times 10�7 in the uniform Bz models.

The pressure-stress relations in the resistive runs are shown
in Figures 9a (zero net flux Bz) and 9b (uniform Bz) together
with the ideal MHD results (circles). Models S51, S52, S53,
and S52i are shown in Figure 9a and models Z51, Z52, Z53,
and Z52i are in Figure 9b. Model parameters in the resistive
runs are identical to these ideal MHD models except for the
magnetic diffusivity. A positive correlation can be seen for
both the uniform (squares) and anomalous diffusivity runs
(crosses). The saturation amplitude in the resistive runs is
slightly lower than that in the � ¼ 0 cases. However, the
difference is at most a factor of 3 because the dependence on
the diffusivity is weak when the magnetic Reynolds number is
larger than unity (Sano & Stone 2002b). The dotted lines in
the figure indicate the power-law relation hhwMii / hhPiiq
with q ¼ 1

4
(Fig. 9a) and q ¼ 1

6
(Fig. 9b). The values of the

index q for the resistive runs are similar to those in the ideal
MHD runs.

The diffusion length for the magnetic field is roughly
ldiA ¼ 2��=vAz. In the uniform Bz models, this scale is well
resolved initially because ldiA ¼ 2��=vA0 � 8�. In the non-
linear regime, the average diffusion length is still larger than
the grid scale (hldiAi ¼ 2��=hv2Azi

1=2 � 3�). However, be-
cause of the severe constraint on the initial ReM, the diffusion
length in the zero net flux models is shorter than the grid scale
(hldiAi=� � 0:4). We therefore carried out double-resolution
versions of the calculations shown in Figure 9a, using 64 ;
256 ; 64 zones. The dependence on the gas pressure is qual-
itatively unaffected by the change in the numerical resolution.
We conclude that the weak power-law relation between the
gas pressure and the Maxwell stress exists for both the ideal
and resistive MHD cases.

3.4. General Features of the Turbulence

3.4.1. Characteristic Quantities

The numerical calculations discussed above show that the
saturation level depends on the gas pressure, the field strength
and geometry, and the equation of state. At the same time,
the saturated states in all these calculations show common
features.

Table 4 lists characteristic quantities in turbulence driven by
the MRI. The quantities are averages from all the models
listed in Tables 1–3, excepting poorly resolved cases (S51i
and S61i) and a stable model (Z92). The averages include
even the isothermal models, the � ¼ 5 models, and the resis-
tive models. The ratios listed are independent of the initial

Fig. 9.—Saturation levels of the Maxwell stress in (a) zero net flux Bz

models (S51, S52, S53, and S52i) and (b) uniform Bz models (Z51, Z52, Z53,
and Z52i). Circles are from the ideal MHD cases. Squares are from resistive
cases with uniform magnetic diffusivity � ¼ �0, and crosses are from cases
with an anomalous diffusivity � ¼ k0(vd � vd0)

2, where vd is the drift velocity.
Dotted lines indicate power laws with exponents (a) q ¼ 1

4
and (b) q ¼ 1

6
.
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conditions and field configuration. The standard deviations
among the models are included in the table after � .

The most interesting ratio in Table 4 is that of the
Maxwell stress to the magnetic pressure. The ratio is about
hhwMii=hhPmagii ¼ 0:46 and takes a similar value for all the
models. Because the Maxwell stress is always about 5 times the
Reynolds stress, the total stress is approximately proportional
to the magnetic pressure in the MRI turbulence. The shear
motion preferentially enhances the toroidal field, so that By is
always the dominant component. The pressures in the
components of the field have universal ratios, hhB2

yii=hhB2
z ii ¼

23 and hhB2
xii=hhB2

z ii ¼ 3:3. The magnetic field in the turbu-
lence is anisotropic. On the other hand, anisotropy in the
perturbed velocity is rather weak, with hh	v2yii=hhv2z ii ¼ 2:2
and hhv2xii=hhv2z ii ¼ 2:6. The ratios listed in Table 4 are valid
for well-developed turbulence driven by the MRI. If ohmic
dissipation is effective and MRI is suppressed, then the ratios
take quite different values (Sano & Stone 2002b).

The magnetic energy density in MRI-driven turbulence is
correlated with the perturbed kinetic energy 	Ekin � � 	v2=2,
and not with the total kinetic energy. The ratio is typically
hh	Ekinii=hhEmagii ¼ 0:33. On the other hand, the ratio of
thermal to magnetic energy has no universal value and ranges
from 10 to 106 in our models. As seen from the pressure-stress
relation, the ratio of magnetic to thermal energy varies ap-
proximately as Emag=Eth / P�3=4 for zero net flux runs. Thus,
this ratio depends on the gas pressure in the nonlinear regime.
This appears to be inconsistent with results of global disk
simulations, in which typically � �100 (e.g., Igumenshchev,
Narayan, & Abramowicz 2003). The difference may be due
partly to the local approximation. In the shearing box simu-
lations, the box height is assumed fixed, while in the global
simulations, the thickness of the disk can change with the
pressure. For a complete comparison with the global simu-
lations, a quantitative understanding of the effects of both box
size and gas pressure is required. Box size effects will be
discussed in a subsequent paper.

3.4.2. Fluctuations

MHD turbulence in our simulations is driven by the MRI.
Fluctuations begin mainly by the growth of unstable modes of
the MRI and initially take the form of perturbations in the
magnetic field and velocity. The fluctuations in magnetic
pressure may affect the distribution of the gas pressure. We find
that the amplitudes of the fluctuations in the magnetic and gas
pressures are always comparable in the turbulent regime. The
spatial dispersion of the pressure, h	P2i1=2 � h(P � hPi)2i1=2,
is evaluated from a snapshot of the spatial distribution of the
pressure. Figure 10 shows the dispersions of both the magnetic
and gas pressure for all the models listed in Tables 1–3. Here
the poor resolution models (S51i and S61i) and stable model

(Z92) are excluded. For each model, a snapshot is chosen from
near the end of the calculation. The time variation in the sat-
uration level is quite large for the uniform Bz runs because
two phases occur. In one phase, a two-channel flow dominates,
and in the other, the field is weaker and the turbulence is dis-
organized. For some of the uniform Bzmodels (Z51, Z61, Z51i,
Z52i, Z61i, and Z62i), the spatial dispersions of 10 randomly
selected snapshots from the saturated turbulence are plotted in
the figure, so as to include information about both of the
phases. Open and filled symbols are from the isothermal and
adiabatic runs, respectively. Circles denote zero net flux Bz

runs, and squares are from the uniform Bz runs. Evidently the
relation h	P2i1=2 � hP2

magi
1=2

holds for all the models shown in
this figure.
Figure 11 shows the spatial dispersions of the density

(circles) and magnetic pressure (squares) as functions of
the ratio of volume-averaged magnetic pressure to volume-
averaged gas pressure, hPmagi=hPi. Again, open symbols are
from isothermal models, and filled symbols are from adiabatic
models. The gas pressure in the adiabatic models increases
significantly in the nonlinear regime, so that gas pressure is
much greater than magnetic pressure. The ratio hPmagi=hPi in
the adiabatic models ( filled symbols) is always less than 0.01.
In the isothermal models, on the other hand, the magnetic
pressure can be comparable to the gas pressure.
For both the adiabatic and isothermal cases, the fluctuation

in hPmagi is independent of hPmagi=hPi and near unity, if the
magnetic pressure is lower than the gas pressure. If hPmagi �
hPi, then the fluctuation is slightly less. Taking account of the
compressibility, the linear growth rate of the axisymmetric
MRI is reduced when the toroidal component of the magnetic
pressure is comparable to the gas pressure (Blaes & Balbus
1994; Kim & Ostriker 2000). This may reduce the fluctuations
in the magnetic field. The density fluctuation, on the other

Fig. 10.—Sizes of fluctuations in the gas and magnetic pressures in the
turbulent regime. All the models listed in Tables 1–3 are included except for
S51i and S61i (poor resolution) and Z92 (magnetorotationally stable). For
several models (Z51, Z61, Z51i, Z52i, Z61i, and Z62i), the dispersions of 10
randomly selected snapshots are also plotted. Open and filled symbols are
from isothermal and adiabatic runs, respectively. Circles denote the zero net
flux Bz runs, and squares are from the uniform Bz runs. Crosses indicate 10
snapshots from model Z62i.

TABLE 4

Characteristic Ratios in MRI Turbulence

Quantity Average

hh�BxBy=4�ii=hhB2=8�ii............................... 0.467 � 0.040

hh�BxBy=4�ii=hh�vx	vyii ............................... 5.19 � 0.67

hhB2
xii=hhB2

z ii .................................................. 3.35 � 0.28

hhB2
yii=hhB2

z ii .................................................. 23.7 � 4.0

hhv2xii=hhv2z ii ................................................... 2.62 � 0.48

hh	v2yii=hhv2z ii ................................................. 2.15 � 0.34

hh	Ekinii=hhEmagii........................................... 0.326 � 0.036
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hand, is proportional to the ratio of magnetic to gas pressure.
In the adiabatic cases the density is almost spatially uniform
( filled symbols) because the magnetic pressure is much less
than the gas pressure in the saturated state. Only when hPmagi
is comparable to hPi do order unity density fluctuations occur.

All the data plotted in Figure 11 are well fitted by functions
h	P2

magi
1=2=hPmagi � hPmagi=hPi þ 1

� 	�1
and h	�2i1=2=h�i �

hPi=hPmagi þ 1
� 	�1

, which are shown by dotted curves.
Crosses in the figure are obtained from 10 snapshots of model
Z62i. Although the density fluctuation and magnetic pressure
are time dependent, the variations move the model along the
same relations in this diagram. The amplitude of density
fluctuations in MRI turbulence is found to be given by

	�2
� �1=2

h�i �
	P2

mag

D E1=2

hPi : ð13Þ

This relation is valid for all the models we performed. Large
density fluctuations are found only when the fluctuations in
magnetic pressure are comparable to the gas pressure.

Where radiation pressure is important, the relationship
between the fluctuations is more complicated. In radiation-
dominated disks, the presence of large density fluctuations in
MRI turbulence requires fast radiative diffusion, as well as
magnetic pressures comparable to the gas pressure (Turner,
Stone, & Sano 2002; Turner et al. 2003). In such disks, the role
of the gas pressure is sometimes played by gas and radiation
pressures together, depending on the radiative diffusion time-
scale. When the diffusion length and MRI wavelength are
comparable, the effective pressure is intermediate between the
gas and total pressures. Equation (13) may hold in radiation-
dominated disks if the gas pressure is replaced by the effective

pressure. The equation might be used to estimate the effective
pressure from the fluctuations.

The energy density of the fluctuations in MHD turbulence is
an interesting quantity in terms of the energy balance. Equi-
partition is found to hold between the kinetic and magnetic
energies of fluctuations (Fig. 12). The symbols in the figure are
the same as in Figure 10. Here the perturbed magnetic energy is
defined as h	B2=8�i � h( Bj j � h Bj ji)2=8�i. The disturbances
in kinetic and magnetic energies shown in Figure 12 both
originate from unstable modes of the MRI, and the two are
roughly equal throughout the saturated turbulence. The thermal
energy of the perturbations, on the other hand, is not in equi-
partition and is comparable to or less than the magnetic energy.
Figure 13 shows the thermal energy of the disturbances as a
function of the magnetic energy. The size of the thermal dis-
turbances is estimated using the internal energy of sound
waves hc2s	�2=2�i (e.g., Landau & Lifshitz 1959). The gas
pressure increases with time in the adiabatic shearing box
calculations, and the ratio hPmagi=hPi decreases. The density
fluctuation is proportional to this ratio, so that h	�2i also
decreases with time. Therefore, the thermal energy of pertur-
bations cannot reach an equilibrium state, while the magnetic
and kinetic energies are in equipartition and almost saturated.

4. DISCUSSION

4.1. Time Variability

The stresses generated by the MRI fluctuate greatly over
time. Since the stresses control the loss of gravitational energy
from accreting material, the radiation emitted locally by the
disk may also vary. Here we focus on the characteristics of the
time variability of the stress in our numerical simulations.

4.1.1. Amplitude of Time Variation

Time variability is shown in Figure 14. The temporal dis-
persion of the stress during the last 50 orbits of each calcu-
lation is normalized by the time-averaged stress and plotted as
a function of the mean vertical component of the magnetic
energy over the same interval. The zero net flux runs listed in

Fig. 11.—Sizes of fluctuations in the density (circles) and the magnetic
pressure (squares) as functions of the ratio of magnetic to gas pressure. Open
and filled symbols are from isothermal and adiabatic runs, respectively.
Crosses are from 10 snapshots of model Z62i. The same models are plotted as
in Fig. 10. All the data are well fitted by functions h	P2

magi
1=2=hPmagi �

hPmagi=hPi þ 1
� 	�1

and h	�2i1=2=h�i � hPi=hPmagi þ 1
� 	�1

.

Fig. 12.—Kinetic and magnetic energies of fluctuations. The models plotted
and the meanings of the symbols are identical to those in Fig. 10. A dotted line
marks equipartition, x ¼ y.
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Table 1 are marked by open circles. The amplitudes in these
models are typically 0.2–0.4, and the average of 0.34 is shown
by a horizontal solid line. The uniform Bz models are plotted
by colored symbols, with meanings as in Figure 6. When the
magnetic energy in the uniform Bz models is relatively low,
the time variations are comparable to those in the zero net flux
models. However, time variations are larger in models with
higher magnetic energies.

The large variations in the uniform vertical field cases result
from recurrent growth of the two-channel flow. This flow
arises from a linearly unstable MRI mode and is an exact
solution of the full nonlinear MHD equations in the incom-
pressible limit (Goodman & Xu 1994). The flows grow to
nonlinear amplitudes before being disrupted by shear insta-
bilities and magnetic reconnection. Two-channel flows occur
when the MRI wavelength is comparable to the vertical height
of the shearing box. The time variability is sensitive to the
ratio of the MRI wavelength kMRI to the vertical box size Lz.
The vertical dotted line in the figure indicates where the rms
of the MRI wavelength, hhk2MRIii1=2 ¼ 2�hhv2Azii

1=2=�, equals
the box height. Time variations of order unity occur in models
with hhk2MRIii

1=2 � Lz. When the MRI wavelength is shorter,
the growth of unstable modes and the dissipation by recon-
nection occur in multiple small regions simultaneously, and
the overall time variations are smoother. The characteristics of
the time variation illustrated in Figure 14 are little changed
by the inclusion of magnetic diffusivity and by increases in
numerical resolution up to 128 ; 512 ; 128.

The observed amplitudes of X-ray variability in black hole
candidates and active galactic nuclei are typically about 0.3
(e.g., Nowak et al. 1999; Papadakis et al. 2002). Local stress
variations of similar size may occur if the MRI wavelength is
an order of magnitude shorter than the disk thickness. How-
ever, radiative processes must be taken into account for more
detailed comparison with the observations. Moreover, the
amplitude may be sensitive to global effects, as it depends on
the size of the box. It may be interesting to compare observed
variability with results from future global disk simulations.

4.1.2. Temporal Power Spectra

The power spectrum is a tool used to make comparisons with
observations. Power spectral density (PSD) can be calculated
from the history of the volume-averaged stress. Kawaguchi
et al. (2000) found in global disk MHD simulations that the
PSD of the stress has a shape similar to the PSD of the X-ray
flux in observations of black hole candidates.
Figure 15 shows the PSD for three models Z62r (strong

uniform field), Z32r (weak uniform field), and S62r (zero net
flux). They are calculated from the history of the Maxwell
stress measured at intervals 10�3trot. The normalized PSDs
shown in Figure 15 are obtained by the following procedure.
The history data from 50 to 300 orbits are divided into eight
intervals of about 30 orbits each. The PSD is calculated for
each segment and the amplitude is normalized by the squared
time average of the stress of each term. Then the PSD aver-
aged over these eight spectra is shown in the figure. The error
bars are standard errors 
/N1/2 of the eight segments. Note that
the bottom two models in the figure are shifted downward to
avoid overlapping; the amplitude of the spectrum is multiplied
by 10�2 and 10�4 for model Z32r and S62r, respectively.
A uniform diffusivity �0 ¼ 10�6 is used in model Z62r. The

diffusion length is ldiA=� � 4, and the effects of ohmic dis-
sipation can be adequately resolved. MRI turbulence is pre-
vented by diffusion if the magnetic Reynolds number, defined
using the MRI wavelength and the Alfvén speed, is less than
unity (Sano & Stone 2002b). In model Z32r, a diffusivity
�0 ¼ 10�6 corresponds to magnetic Reynolds number 0.039.
For sustained turbulence in model Z32r, we therefore use a
lower diffusivity �0 ¼ 10�7:5, corresponding to ReM ¼ 1:2 and
ldiA=� � 1.

Fig. 13.—Thermal and magnetic energies of fluctuations. The models
plotted and the meanings of the symbols are identical to those in Fig. 10. A
dotted line marks equipartition, x ¼ y.

Fig. 14.—Amplitude of temporal variability in the Maxwell stress as a
function of the vertical magnetic energy. The amplitude is the time dispersion
of the stress normalized by the time-averaged stress. Open circles are from the
zero net flux Bz models listed in Table 1. Colored symbols are from uniform Bz

models, with meanings as in Fig. 6. The horizontal solid line shows the
average, 0.34, among the zero net flux runs. The vertical dotted line indicates
where the rms of the MRI wavelength hhk2MRIii

1=2
is equal to the vertical size

of the computational domain Lz. When the magnetic field in the nonlinear
regime is strong enough that hhk2MRIii

1=2 � Lz, the amplitude of time varia-
tions is of order unity.
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The PSDs of the weak uniform field (Z32r) and zero net
flux (S62r) models are quite similar, as are the amplitudes of
the time variability (Fig. 14). The strong uniform field model
(Z62r) exhibits large time variations with quasi-periodic
spike-shaped excursions. The PSD of this model has a steeper
slope near the orbital frequency than the other models. The
power-law indexes p (PSD / f �p) of the spectra are listed in
Table 5. Because the spectra are not well fitted by single
power laws, the indexes are calculated for three different fre-
quency ranges. The indexes for the ideal MHD and anomalous
diffusivity models are also listed for purposes of comparison.
In all the models, the PSD is steepest in the middle frequency
range 0:1 < 2�f =� < 1 and shallowest in the lower frequency
range 0:01 < 2�f =� < 0:1.

Basically, the time variation of the stress in the MRI tur-
bulence consists of repeated exponential growth and expo-
nential decay. The PSD of a simple exponential function is flat
at low frequencies and proportional to f�2 at high frequencies.
This feature can be seen at the higher and lower frequencies in
the spectra shown in Figure 15. The power-law indexes in the
higher range 1 < 2�f =� < 10 are close to 2, and the variation
is flattest in the lower range 0:01 < 2�f =� < 0:1. However,
the slope is much steeper than p ¼ 2 in the middle range
0:1 < 2�f =� < 1. This is because the exponential growth and
decay are truncated after finite intervals. The typical period of
the spike-shaped variation is a few orbits, and the PSD is
enhanced near the corresponding frequency. Armitage &
Reynolds (2003) find similar features in the temporal power
spectrum of a local annulus in a global disk simulation. X-ray
observations of black hole candidates and active galactic
nuclei exhibit a power-law decline with a shallower index
p � 1 2 (e.g., Nowak et al. 1999; Papadakis et al. 2002). This
suggests again that global disk simulations may be necessary
for comparison with observed time variability.

4.1.3. Growth and Decay Rates of the Stress in Turbulence

The time variations in stress mostly consist of brief periods
of exponential growth and decay. The rates of growth and
decay of the Maxwell stress can be estimated approximately
by the following method. From the history of the volume-
averaged stress w(ti) sampled at regular intervals, we select
local extrema wex, where ½w(tiþ1)� w(ti)�=½w(ti)� w(ti�1)� <
0. The extrema occur at times tex. The rate of change between
the jth extremum and the next is calculated by

! ¼ ln wex; jþ1 � ln wex; j

tex; jþ1 � tex; j
; ð14Þ

where a positive (negative) sign for ! indicates growth
(decay). When the time between peaks is short, the change in
stress is small. We ignore intervals less than 0.1trot.

Histograms of the growth and decay rates are shown in
Figure 16 for models Z62r, Z32r, and S62r. The weak uniform
field model (Z32r) and zero net flux model (S62r) have quite
similar distributions, symmetric between growth and decay. By
contrast, the distribution for model Z62r is obviously asym-
metric. As mentioned above, turbulence in models Z32r and
S62r is disorganized, and the growth and decay of perturba-
tions in different parts of the simulation volume are uncorre-
lated. When averaged over the many perturbations present, the
stress varies less with time than in each individual perturbation.
The histogram peaks at growth rates less than the maximum for
the MRI, !max ¼ 0:75�. In model Z62r, on the other hand,
increases are due to the growth of the domain-filling two-
channel flow, and decay happens by nearly simultaneous mag-
netic reconnection throughout. The mean growth rate 0.23� is
not much less than the MRI growth rate. The distribution of
decay rates shows a tail extending to faster values, suggesting
that reconnection rates may differ from one event to another.

The timescale of magnetic reconnection depends on the
Alfvén speed. For example, the timescale of the slow recon-
nection model (Sweet 1958; Parker 1957, 1963) is given by

�rec ¼
L

vA

ffiffiffi
S

p
¼ L3=2

v
1=2
A �1=2

; ð15Þ

Fig. 15.—Normalized power spectral density for models Z62r (strong
uniform field), Z32r (weak uniform field), and S62r (zero net flux). The
amplitude is normalized by the squared time average of the stress. The spectra
of Z32r and S62r are divided by 102 and 104, respectively. Each spectrum is
the average of eight spectra calculated from eight segments in the history data
for each model. The error bars are the standard errors obtained from these
eight spectra. The power-law indexes of the spectra are listed in Table 5.

TABLE 5

Power-Law Indexes of Power Spectral Density

Frequency Range (2�f /�)

Model 0.1–1 1–10 10–100

Strong Uniform Field

Z62 ........... 1.31 4.41 2.16

Z62r.......... 1.00 4.14 2.35

Z62a ......... 0.54 4.01 2.06

Weak Uniform Field

Z32 ........... 1.80 3.66 2.07

Z32r.......... 1.46 3.58 2.04

Z32a ......... 1.66 3.66 2.05

Zero Net Flux

S62 ........... 1.83 4.12 2.11

S62r .......... 1.81 3.81 2.08

S62a.......... 1.70 3.33 2.02
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where L is the size of a reconnection region and S ¼ LvA=�.
If !decay � ��1

rec , then decay will be faster when the Alfvén
speed is faster. Figure 17 shows the growth (circles) and
decay rates (squares) for model Z62r as a function of the
Maxwell stress. Time intervals with larger jumps in the stress,
ln wex; jþ1 � ln wex; j



 

 > 1, are selected for this figure. The
magnetic energy is proportional to the Maxwell stress, so that
the horizontal axis also indicates the amplitude of the mag-
netic energy. The growth rate is independent of the magnetic
stress, while the decay rate increases with magnetic stress and
energy. Similar relations occur in the anomalous diffusivity
(Z62a) and ideal MHD models (Z62). The Alfvén speed is
vA ¼ (2wM=f �0)

1=2, where f � wM=Pmag � 0:5 is the ratio of
the Maxwell stress to the magnetic pressure (Table 4). If
the field decays as a result of reconnection at a rate
!rec � ��1

rec ¼ L�3=2v
1=2
A �1=2, then

!rec

�
¼ v

1=2
A �1=2

L3=2�
� f

0:5

� ��1=4
L

0:2

� ��3=2
wM

P0

� �1=4

ð16Þ

for model Z62r (P0 ¼ 1:25 ; 10�5, � ¼ 10�6, and � ¼ 10�3).
The relation given by equation (16) is shown by a dot-dashed
line in the figure. Of course, this interpretation may be too
simplified to compare with the simulation results because the
Sweet-Parker picture is based on a steady structure in the
reconnection region. In MRI-driven turbulence, reconnection
continues at most a few orbits because the supply of magnetic
flux entering the diffusion region is limited. Reconnection in
this situation may be unsteady. It is evident that magnetic
reconnection is a key process in determining the saturation
level of the MRI turbulence. Magnetic reconnection also
makes a major contribution to magnetic energy release in
global disk simulations (Machida & Matsumoto 2003). Un-
derstanding nonsteady magnetic reconnection may be impor-
tant for future progress.

4.2. Origin of the Pressure Dependence

The magnetic energy in the saturated turbulence is deter-
mined by a balance between field enhancement by the MRI
and dissipation through magnetic reconnection. The linear
growth rate of the MRI is independent of the gas pressure if
the magnetic pressure is much smaller than the gas pressure,
as it is in the turbulence. Thus, it is quite natural to expect that
the gas pressure dependence of the stress may arise from a
pressure dependence in the rate of dissipation by magnetic
reconnection. The effects of gas pressure on magnetic recon-
nection are examined by Ugai & Kondoh (2001), using two-
dimensional MHD simulations with an anomalous resistivity.
Conditions differ from those we considered in that magnetic
pressure exceeds gas pressure. Smaller gas pressures lead to
thinner current sheets and more drastic reconnection. The gas
pressure also affects reconnection in laboratory experiments
by Ji et al. (1998). High gas pressures downstream from the
diffusion region substantially reduce the outflow and thus the
reconnection rate. Overall, the results of these simulations and
experiments are consistent with a picture in which higher gas
pressures lead to slower reconnection of magnetic fields.
The fluctuation-dissipation relation, equation (9), links the

rate of change of thermal energy to the stress in the nonlinear
regime. If the limiting process in the energy change is re-
connection, the left-hand side of equation (9) is approximately
dEth=dt � Eth=�rec, and the saturated stress is proportional to
P/� rec. The stress may vary overall with P1/4, as in the zero net
flux Bz models, if the reconnection timescale is proportional to
P3/4. For example, if the size of the reconnection region is
proportional to the pressure scale height (L / cs=�), then
�rec / L3=2 / P3=4. The interpretation discussed here is qual-
itatively consistent with our numerical results. For further
quantitative discussion, it may be necessary to understand the
effects of gas pressure on nonsteady magnetic reconnection.

Fig. 16.—Histograms of growth and decay rates in models Z62r (strong
uniform field), Z32r (weak uniform field), and S62r (zero net flux). The rates
are defined by eq. (14). The distribution is asymmetric in model Z62r and
symmetric in the other two models.

Fig. 17.—Growth (circles) and decay (squares) rates in model Z62r as
functions of the magnetic stress. For this figure, data are taken only from time
intervals with larger changes in the stress, ln wex; jþ1 � ln wex; j



 

 > 1. The
growth rate is almost independent of the magnetic stress, but the decay rate is
larger when the magnetic stress and magnetic energy are larger. The dot-
dashed line indicates the decay rate estimated from a simple model based on
Sweet-Parker type reconnection.
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5. SUMMARY

We investigate the saturation level of the MRI using three-
dimensional MHD simulations. To simplify the problem, the
local shearing box approximation is adopted and the vertical
component of gravity is ignored. The dependence of the sat-
uration level on the physical quantities is scrutinized, with
special attention to effects of gas pressure. The gas pressure
increases with time in adiabatic calculations, and the increase
affects the long-term evolution of the saturation level. This
feature is carefully taken into account in the analysis of the gas
pressure dependence. The main results are summarized below.

1. A power-law relation between the saturation amplitude of
the Maxwell stress and the gas pressure in the nonlinear regime
is derived from all the models performed in this paper. The
power-law index is small (q ¼ 1

4
1
6
) and varies slightly with the

geometry of the magnetic field.
2. For the zero net flux models, the power-law index is

about 1
4
and the saturation level is independent of the initial gas

pressure, the magnetic field strength, and the equation of state.
However, if the MRI wavelength is not resolved by at least six
grid zones, the saturation level is affected greatly by numerical
dissipation.

3. For the models with a uniform vertical initial field, the
power-law index in the pressure-stress relation is smaller than
that in the zero net flux models. The saturation level is higher
for larger vertical magnetic fluxes, but there are upper and
lower limits on the saturation level depending on the strength
of the uniform field.

4. Similar pressure-stress relations are obtained in ideal
MHD calculations and resistive MHD models with magnetic
Reynolds numbers greater than about 10. There is no clear
difference in saturation level between models with a uniform
diffusivity and an anomalous diffusivity.

5. There exist many characteristic ratios among the quan-
tities in the MRI turbulence. The ratios are independent of
initial conditions, including the strength and geometry of the

magnetic field and the gas pressure. The perturbed magnetic
and kinetic energies are maintained near equipartition.

6. The amplitude of time variability in the Maxwell stress is
characterized by the ratio of the magnetic pressure to the gas
pressure in the nonlinear regime. The power spectral density of
the temporal variability generally has a steep slope around the
frequency corresponding to a few orbits.

The gas pressure dependence of the saturation level may
originate in the process of magnetic reconnection. The gain
side of the magnetic energy balance is unlikely to depend on
gas pressure, since the MRI linear growth rate is independent
of the pressure when plasma � exceeds unity. Although there
is some qualitative evidence supporting an idea that higher gas
pressures reduce reconnection rates, a deeper understanding of
magnetic reconnection is necessary for a quantitative dis-
cussion of the saturation mechanism of the MRI.

The final goal of this work is to derive a predictor function
for the saturation level of the MRI. For this purpose, we must
determine how the saturation level depends on all the physical
quantities. For example, we have studied the gas pressure
dependence using the local shearing box approximation, with
the height of the box independent of the gas pressure. In real
accretion disks, however, the scale height of the disk varies
according to the pressure. Before proceeding to derive a sat-
uration predictor and to examine the similarities and differ-
ences between the � -prescription and numerical results, the
effects of changes in disk thickness must be considered. The
effects of the other parameters, as well as a final form of
the predictor function, will be discussed in a subsequent paper.

We thank Gordon Ogilvie for useful discussions and com-
ments. Computations were carried out on VPP300/16R and
VPP5000 at the National Astronomical Observatory of Japan
and VPP700 at the Subaru Telescope, NAOJ.
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