2009年春季年会@大阪

黒点暗部における 上昇流を伴う輝点の侵入 _{京都大学物理学・宇宙物理学専攻} _{修士2年}渡邊 皓子

2009年春季年会@大阪

黒点暗部における 上昇流を伴う輝点の侵入 _{京都大学物理学・宇宙物理学専攻} _{修士2年}渡邊 皓子

暗部内に侵入する輝点 (umbral dot)を発見

輝点に伴う**Doppler shift** の時間変化を追う

Light bridge

Umbral dot

Motion of Umbral Dot

Umbral dotの水平方向の運動

周辺部 (磁場斜め) ▶ inward migration 中心部 (磁場垂直) ▶ almost no motion

Evolution of Light Bridge

- Light bridgeの進化におけるUmbral dotの侵入
- light bridgeを形成して いるumbral dotは 1-2km/sで暗部内へ侵入 (peripheral umbral dot は平均0.7km/s)

Doppler blue shift ~0.5 km/sを伴う

Inward migration

Observation

- Dunn Solar Telescope $\phi76cm$
- Interferometric Bidimensional Spectrometer (IBIS)
- 2006年8月24日 15:50-17:50
- Fe I 709.0nm & continuum

center 721nm, FWHM 9.6nm

■ マップ(40 wavelength point scan)の時間間隔 37秒

Bright Point

Doppler shift@line center of Fe I 709nm

0.12km/s

-0.12km/s

Speckle image of continuum at 721nm

dark core

blue shiftを伴う 輝点を発見

Doppler shiftは, 5分振動成分を取り除く ために, 9 frame(約5.5分)を平均してある 速度のゼロ点は、dark coreでの平均値

Bright Point

寿命と位置ずれ

<mark>赤:Doppler shift</mark>での 上昇流の位置 <mark>緑:continuum image</mark> での輝点の位置

■ 寿命は約10分

直径は最大の時で600km

- x方向(東西方向)への輝点の位置 ずれ
 - Doppler shiftとcontinuum imageでの見ている高さの違い

輝点の時間変化

実線:輝点 破線:reference region

- Continuum intensityが最も明るくなった時、
 上昇流も最大値 0.1km/sをとる
- 暗部中心方向への侵入速度は、1.0-2.0 km/s
 (一般的なperipheral umbral dotより速い)

高さ方向の上昇流分布

- bisector analysis
 - ▶ 10点を平均
 - ▶ 高さ方向への違い
- 深い層ほど速い上昇
 流 ~0.3 km/s

Jin Mary		
		10 分
3		600 km
	水平方向 移動速度	1.0-2.0 km/s peripheral umbral dotより速い 明るい構造(light bridge?)に沿った方向
	視線方向 Doppler shift	line centerで~0.1 km/sの上昇 吸収線の浅い所で~0.3 km/sの上昇
	line formation height	輝点の位置の東西方向のずれ line center (Doppler)とcontinuum (intensity)で140 kmの違い

Discussion

- 下層からの磁気対流によるガスの上昇
- 傾いた磁場中でのinward migration
- Q. 上昇したガスはどこへ行く? …下降流は見つからず
- Q. なぜperipheral umbral dotより速い?
- … light bridge付近は磁場が弱いから
- Q. line formation heightが違うのに、同じタイミ ングでpeakを持つのはなぜ?

…実際は4 km/s以上 (=140km/37sec)で上昇している? Q. Blue shiftを伴わない輝点のメカニズムは? …同じpathを通る後続の輝点にはblue shiftなし?

End of the Talk

Special Thanks... 北井 礼三郎 先生 一本 潔 先生 Alexandra Tritschler さん Thoman Rimmele さん Rolf Schlichenmaier さん

Backup slides

Intro. Umbral Dot

■ Umbral dot の性質

サイズ	200 - 400 km
寿命	5-40 分 典型的には10 分
固有運動	peripheral: 0.5-1km/s で暗部中心方向 central: なし
磁場強度	2000-2500 Gauss 周囲より数十Gauss弱い
ドップラー 速度	上昇流 30 - 100 m/s

可視光で 見える高さ

ガスの上昇

高温ガス

の上昇

Intro. Light Bridge

■ Light bridge の性質

サイブ	幅 500-3000 km
リイス	長さ 数千, 数万km
寿命	数日(黒点崩壊期に多い)
見た目	半暗部タイプ
の分類	粒状斑タイプ
磁場強度	1000-2000 Gauss 周囲より数百Gauss弱い
ドップラー 速度	明るさと上昇流に正の 相関 (Rimmele 1997)

LINE FORMING REGION

Jurčák et al. 2006

Inward migration

- Schlichenmaier et al. (2002)
 - moving tube model
 - 磁束管の浮上に伴う足元の inward motion
 - central UDは再現できない
 - penumbraの明るさを説明で きない

MHD simulation

- 下降流はまだ観測されていない
- central UDとperipheral UDは、 磁場の傾きが違うだけ

