Characteristic Dependence of Umbral Dots on their Magnetic Structure (will be published in ApJ, 2009 September) Hiroko Watanabe Kyoto University, Japan

Introduction

Umbral dot (UD)

Size	~300 km
Lifetime	5-40 min typically 10 min
Proper motion	peripheral: 0.5-1 km/s umbra inward central: almost static
Field strength	2000-2500 Gauss ~40 Gauss weaker
Doppler velocity	upflow 30 - 100 m/s

Penumbra Umbra

Hinode SOT G-band

Courtesy to T.J.Okamoto

Background

Observation

Theory

The brightness of umbra is 5%-20% of Iquiet

The convection is suppressed by magnetic field

Field strength of umbra is at most 3500Gauss

If the convection is suppressed entirely, the umbra should have > 5000Gauss

umbral dot ~500K hotter than umbra Magnetoconvection should take place

Danielson (1964), ApJ, 139, 45

Deinzer (1965), ApJ, 141, 548

Motivation

- High- resolution data obtained by the Hinode satellite
- Magnetoconvection origin
 - ▶ size, lifetime, proper motion, ...
 - magnetic field, field inclination

applicable to the physics in accretion disk, low T stars, ...

- correlation between magnetic field and UD
- Comparison with 3D MHD simulations
 - structure of sunspot
 - energy transport in sunspot

Data

[Gouss]

- Hinode Solar Optical Telescope
- March 1, 2007
- imaging: blue continuum
 - 25s cadence, 2 hrs duration
 - spatial resolution 0.054" (40km)
 - spectropolarimeter: Fe I 6302Å
 - 15 min to scan 20000km area
 - spatial resolution 0.16"(100km)

Analysis

- Automatic detection
- peak position with Ipeak>1.3×Ibg
- The continuation between successive frames

- Total amount of UDs
 is 2268
 (average 124 per frame)
- UD parameters
 - ▶ lifetime
 - size
 - brightness ratio (Ipeak / Ibackground)
 - average speed
 - velocity orientation

Result 1/4

- Spatial distribution
 - ▶ Fewer UDs in stronger fields \Rightarrow Suppression of convection
 - ▷ Cellular patterns⇒ reflect the global substructure?

Result 2/4

- Correlations
 - lifetime

almost constant

SiZE almost constant smaller in strong field (?)

Result 3/4

Velocity analysis

Speed...faster in more inclined field regions

orientation

- horizontal *B* toward center
- vertical *B* weak correlation

Inward migration

Result 4/4

Oscillatory light curve

strong power in 1-2 mHz (8-16 min) component

Summary

umbral dot is the target which can directly measure the interaction between magnetic field and convection

- UDs are fewer in strong magnetic field regions
- Lifetime and size of UDs show almost no dependence on field strength
- UDs move faster towards the center of the umbra in the oblique field regions
- The oscillatory light curve of UDs may be explained as the successive appearance of another UD

Backup slides

Result 1/4

1.5

Outside:

Histogram

boundary Iquiet=0.2

The same as the previous studies

Proper motion

Velocity analysis < Important</p>

10,000km

Central (oblique **B**) ▶ inward migration

Peripheral (vertical *B*) ▶ almost no motion

Lifetime

What determines the lifetime of UDs?

Magnetoconvection

Important parameters

- Q... Chandrasekhar number (Field strength)
- R... Rayleigh number (adiabatic gradient)

Recent MHD simulation

Lightcurve 1/2

characteristic
 lightcurve

weaker fields
 bighter
 fast brightening
 & slow darkning

- stronger fields darker smaller fluctuation symmetric brightening
- & darkning

Analysis 2/2

Dark lane

Sütterlin et al. (2004) $\tau = 1$

- topにcoolでdenseな
 material
 観測される高さT=1が
 - cool materialを横切る

MHD simulation z(Mm) ■ 下降流はまだ観測されていない central UDとperipheral UDは、 磁場の傾きが違うだけ 3 y[Mm] 2 32 20 22 24 26 28 30 **Rempel** (2008) x[Mm]

Inward migration

- Schlichenmaier et al. (2002)
 - moving tube model
 - 磁束管の浮上に伴う足元の inward motion
 - central UDは再現できない
 - penumbraの明るさを説明で きない

