黒点暗部微細構造に関する 観測的研究

京都大学 物理学・宇宙物理学専攻 修士2年 渡邉 皓子

2009年2月7日土曜日

黒点暗部微細構造に関する 観測的研究

京都大学 物理学・宇宙物理学専攻 修士2年 渡邉 皓子

2009年2月7日土曜日

<u>これまでに行なった研究</u>

Ellerman Bombと磁場の関係

☑ 太陽フレアにおけるCall K線の時間変化

☑ Lya ロケット実験における偏光観測装置

☑ Umbral Dotの統計解析

Introduction

Umbral dot (UD)

サイズ	200 - 400 km
寿命	5-40 分 典型的には10 分
固有運動	peripheral: 0.5-1km/s で暗部中心方向 central: なし
磁場強度	2000-2500 Gauss 周囲より数十Gauss弱い
ドップラー 速度	上昇流 30 - 100 m/s

Hinode SOT blue continuum (光球)

Introduction

Umbral dot (UD)

サイズ	200 - 400 km
寿命	5-40 分 典型的には10 分
固有運動	peripheral: 0.5-1km/s で暗部中心方向 central: なし
磁場強度	2000-2500 Gauss 周囲より数十Gauss弱い
ドップラー 速度	上昇流 30 - 100 m/s

Hinode SOT blue continuum (光球)

Background 1/2

暗部の磁場は 最大でも3500Gauss

Danielson (1964), ApJ, 139, 45

Deinzer (1965), ApJ, 141, 548

Background 2/2

<u>Beckers & Schröter (1968)</u> UDのサイズ 150-200km

<u>Kitai (1986)</u> UDの固有運動 central UD... 運動なし peripheral UD...約0.4km/sで暗部中心へ

<u>Zwaan (1986)</u> UDが多い所は磁場が弱い

地上観測の制約 ① seeing ② 観測時間

Recent MHD simulation

10,000km

[™]Intensity

3000km

上: Schüssler&Vögler(2006) 右: Rempel(2008)

磁場強度分布⇒

Motivation

- 太陽観測衛星 Hinode の高分解能データ
- 磁気対流(磁場と対流の相互作用)
 - ▶ サイズ、寿命、固有運動
 - ▶ 磁場強度、磁場の向き
 - ▶ 磁場と、サイズや寿命との相関
- 3次元MHDシミュレーションとの比較
 - ▶ 黒点の構造
 - ▶ Umbral dotの分類

降着円盤や低温星の物理にも応用可能

1. Statistical Survey of Umbral Dots

寿命、サイズ、温度、固有運動を求めた Umbral Dotのfusion, fissionを報告

- ➡ Kitai et al. (2007), PASJ, 59, 585
- Magnetic Structure of Umbral Dots
 弱い磁場、上昇流を伴う
 ライトカーブの振動
 - Watanabe et al. (2009), ApJ, in press
- 3. Characteristic Dependence of Umbral Dots on their Magnetic Structure
 - Today's talk

Umbral dotの特徴は 磁場とどのような関係をもつ?

Outline

UDの寿命やサイズ、固有運動をbiasなく検出

automatic detection algorithm

■ 分光データから磁場の強度と向き

Data

- Hinode 可視光望遠鏡
- 2007年3月1日
- 晶像: blue continuum (4505Å)
 - 25秒間隔、約2時間連続
 - pixel size 0.054秒角(40km)

│ 分光: Fe I 6302.5Å

- 20,000km(黒点全体)を スキャンするのに約15分
- pixel size 0.16秒角(110km)

Analysis 1/2

■ Umbral dotを自動で検出
 ▶ 周囲より3割以上明るいpeak
 ▶ 次のフレームとの連続性

検出されたUD 2268個

UD parameters

- ▶ 寿命
- ▶ サイズ
- ▶ 明るさの比 (peakの明るさと周囲 の明るさの比)
- ▶ 運動の速さ
- ▶ 運動の向き

Analysis 2/2

Result 1/4

Histogram

境界は0.2×(静穏領域の明るさ)

外側: peripheral 内側:

central

	全体の 平均	central	peripheral					
寿命	7.4分	6.5分	< 7.8分					
半径	184km	178km	1 87km					
I _{peak} /I _{bg}	1.73	1.51 <	1.85					
平均 速度	0.44 km/s	0.33 km/s	0.50 km/s					

これまでの研究 (Kitai et al. 2007) と同じ分布

Result 2/4

空間分布

▶ 磁場が強い所にはUDは少ない⇒対流をより強く抑制

▶ セル状の構造⇒黒点深部のglobalな構造を反映?

Result 3/4

- 相関関係
 - ▶ 寿命

ほとんど変化なし (約10分)

▶ サイズ

磁場が強い所で小さい

磁場強度 [Gauss]

Lifetime

What determines the lifetime of UDs?

Result 4/4

2.0

1.5

1.0

0.5

0.0

-0.5

10

20

磁場の傾き角 [°]

30

50

40

平均速度 km/s]

• 磁場が垂直 相関小さい

Proper motion

周辺部 (磁場斜め) ▶ inward migration 中心部 (磁場垂直) ▶ almost no motion

Result 4/4

運動解析

- ▶ 磁場が垂直…ゆっくりと ランダムな運動
- ▶ 磁場が斜め…速い速度で 暗部中心方向へ運動

Inward migration

Summary

umbral dotは、磁場と対流の相互作用を 直接測定できる貴重な対象

- 磁場が強い所では…
 - ▶ 発生頻度が少ない⇒ <mark>対流をより強く抑制</mark>
 - ▶ sizeが小さい⇒ gasの膨張を抑制
 - ▶ lifetimeは一定⇒ lifetime~size/rise velocityで、 size ↘, rise velocity ↘
- 磁場が水平に傾いている所では…
 - ▶ 暗部中心方向に速いスピードで運動する

⇒ 傾いた磁場中でのガスによる磁力線の折り曲げ

End of the Talk

Special Thank 北井 礼三郎 先生 一本 潔 先生 柴田 一成 先生 宇宙物理教室の皆様 花山・飛騨天文台の皆様

Backup slides

Lightcurve 1/2

Lightcurve 2/2

30

- Iightcurveが振動している?
 - 30分以上のlifetimeのUD 76個 16分 10分

strong B

8000

4000

6000

Dark lane

- topにcoolでdenseな
 material
- 観測される高さτ=1が cool materialを横切る

UD Parameters

lifetime

- ▶ (消滅した時間)–(出現した時間)
- radius
 - ▶ peak位置から0.5*(*I_{peak}+<i>I_{bg}*)までの距離
- average speed
 - ▶ (出現から消滅までの距離)/(寿命)
- velocity orientation
 - ▶ 出現位置から消滅位置へのベクトル方向

Traveling wave

- The speed of traveling wave depends on...
 - field strength
 - stratification
 - ▶ obliquity ϕ
- 磁場>対流では
 travelingの方向は
 磁場と逆向き

v_p: phase speed of the traveling waves u: mean horizontal flow at the surface

Hurburt, Matthews, Proctor (1996)

Inward migration

Schlichenmaier et al. (2002) moving tube model 磁束管の浮上に伴う足元の inward motion central UDは再現できない penumbraの明るさを説明で きない

Mixing length theory

MHD simulation

- 下降流はまだ観測されていない
- central UDとperipheral UDは、 磁場の傾きが違うだけ

Distance v.s. Lifetime

Lifetime travel distance

Cluster? Monolithic?

Histogram

Magnetoconvection

		Table 1. Properties of a model umbra with $B_0 = 3000$ G.					
■ 黒点における磁気対流		z	Р	v_A	\$		
			(km)	$(dynes cm^{-2})$	$(\mathrm{km} \mathrm{s}^{-1})$		
	圧力や磁場が高	高さ方向	可に	0	2.7×10^5	8.1	0.003
大幅に変化			100	6.3×10^5	6.8	0.008	
•				500	3.8×10^6	4.7	0.056
▶ 非線形			1000	$1.1 \ge 10^7$	3.1	0.29	
				2000	5.3×10^{7}	1.7	3.1
0.8 Mm	Va > 3	000 km/s		4000	$4.1 \ge 10^8$	0.8	32
0 Mm V ~	5 km/s	<1	Cs ~ 10 km/s	;	Weiss (1981) J. Fluid	Mech
beta >> 1			数値計算が				
-7.2 Mm	500 m/s		Cs ~ 30 km/s		不	可欠	
	Rempel (2008)					

2009年2月7日土曜日