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Method

. Observational data of the flare (~103% erg) in

1985 from AD Leo (dM3e star)
[Hawley & Pettersen, 1991]

- Investigated the impact of this flare on the
atmosphere of a hypothetical, Earth-like planet

(with no magnetic field) located within
habitable zone (at 0.16 AU) of AD Leo,

. ~ . .
using | a 1-D radiative-convective model

<

_a 1-D photochemical model
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Ozone O3

Ozone is important to search for extrasolar life
because

Ozone can on the planetary surface
from damaging UV radiation

Ozone is one of the best compounds for
extrasolar life via remote sensing
= a promising “biosignhature”
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Include the effect of protons

Observ> UV (1800-3200A)
& [Mitra-Kraev et al., 2005]

X-ray (1-8A)

@ [Belov et al., 2005]

Protons (> 10MeV)
& [Ejzak et al., 2007; Thomas et al., 2007]

NOx

7

Introduced this increase of NOx

at the time when the flare peaks
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Result
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The significant UV
Increase takes place
only around the flare peak £
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Estimation of Freguency
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Estimation of Freguency
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Planets orbiting M dwarfs encounter the protons
with 1034 erg flares over Once a Decade !!

(the frequency rises when a large starspot appears.)
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UV & Protons
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An Important Remaining Issue
= Magnetic Field &

- A magnetic field allows the entrance of protons only
through the poles.
= |t the planet has a magnetic field, the depletion
may become smaller and the predicted recovery
time may shorten. (e.g. Thomas et al., 2007)

- 2-D or 3-D model is required to calculate those
factors in detail for the planet with a magnetic field.



Summary -~

- M dwarfs are often regarded as the primary targets in the
search for habitable planets.

- However, there are some complications including the high
chromospheric activity which leads to large and frequent flares.

- Such a flare causes the ozone depletion of 94% in the
atmosphere of the planet with no magnetic field and recovery
takes about 50 years.

- Taking into account the high frequency of the flare production,
the ozone must be destructed constantly so that it could not
exist in the atmosphere on the planets in the habitable zones of

M-type stars.

- Magnetic fields should be considered with 2-D or 3-D models.
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Disadvantages
of Targeting M Dwarfs for Habitable Planets

- M dwarfs often have high chromospheric activity
which greatly affects planets in HZ close to the stars

- Large starspots lower the accuracy of the transit
method or the Doppler method (—e.g., Omiya-san’s talk)

- High possibility to be tidally locked

- Many planets around M dwarfs are surrounded by H/He

envelopes which make the planets uninhabitable
--eTcC.

Are these planets really "habitable™?
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Hawley and Pettersen, 1991

The Flare from AD Leonis
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FiG. 1.—Flare light curves as measured in U, B, V, and R. F,, the mono-
chromatic continuum flux in each filter, is plotted against time. The continuum
F, at two ultraviolet wavelengths measured in the [UE LWP spectra are also
shown. Zero on the time axis corresponds to 04:40 UT, the flare start time.
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Input Data of the Flare
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Fraction change in the O, column depth

et al., 2010
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Estimate the Proton Flux

he proton flux can be estimated from the X-ray
intensity(1-8 A) of the same flare.  [Belov et al., 2005]

[,(>10 MeV) = (4.8+£1.3)x 107 [/14*%14

.- The X-ray luminosity also can be derived from
the UV energy density. [Mitra-Kraev et al., 2005]

44,6108
ZLy=10"""Ev1  (2450-32004)

15 e1.
L,=10" (g)UVZ (1800-2250A)
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Scale the NOx Production

- The production of IS proportinal
to the proton fluence [Ejzak et al,, 2007; Thomas et al., 20071

. Estimate nitrogen oxide production based on this
relation

using the data of the
NOx production for
the Carrington Event
calculated by Rodger
et al., 2008

- Introduce this increase in the number density of
NOx at the peak of the flare (915 s)




Fig.7 in Rodger et al., 2008
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Figure 7. SPE-driven changes in odd nitrogen (NOy) determined from the SIC model for the
varying SPE spectra, and show as the ratio to the control run (Figure 3). The left panels are for
the northern hemisphere, while the right are the southern hemisphere. [See the online version

for the color version of this figure].
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Fraction change in the O, column depth
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At the maximum depletion, the O3 column depth was 1.1%1018 ¢m 2.
This 1s 15 times lower than the 1nitial O3 column depth for the AD
Leo planet and 7.5 times lower than the O3 column depth cal- culated
for present Earth by our model.
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Change of the UV Flux

TABLE 2. ULTRAVIOLET INTEGRATED FLUX IN W M2 FOR SELECTED TIMES BEFORE, DURING,
AND AFTER THE UV FLARE wiTH A PROTON EVENT INCLUDED

UVA UVB uve
(31504000 A) (2800-3150 A) (<2800A)
TOA Surface TOA Surface TOA Surface
102.36 118.45 17.23 255 6.73 2.13x107 1
AD Leo planet
Quiescence (f=0s) 2.60 2.97 0.20 0.01 2.76 1.93x10~ '
Flare start (f=100s) 10.89 11.59 5.34 0.21 43.10 1.93x10~ 1
Flare peak (t=915s) 112.17 120.77 45.43 C 315 ) 368.76 1.93x10™ "
After flare (f =7.6x10%s) 2.60 3.00 0.20 0.02 2.76 B
After flare (t=1.3x10"s) 2.60 3.02 0.20 0.04 2.76 2.52x1071°
After flare (t=6.4x107 s) 2.60 3.03 0.20 0.06 2.76 5.85x107°
After flare (f=1.4x10%s) 2.60 3.03 0.20 0.06 2.76 8x10°
After flare (t = 6.0x10%s) 2.60 3.00 0.20 0.02 2.76 1.93x10 "

Earth values are shown for comparison. TOA, top of the atmosphere. UV_ A UV_ B UV_C

3150-4000 A 2800-3150 A <2800 A

Safer than B or A More
C by the factor Slif RRINGEOLE

of a hundred

dangerous !
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Estimation of Freguency
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Estimation of Freguency
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Fig. 11 Distributions of CME mass and Kinetic energy of all CMEs for which mass and speed
measurements were possible. The average (Ave) and median (Med) values of the distributions are shown on
the plots

*20% of CMEs may not have been detected by LASCO because they are
either masked by the occulting disk or they are back-sided. (Yashiro+, 2005)



Lower Energy Flares are More Freqguent

Table 3. Flare rates for KIC 5474065 and KIC 9726699
compared to AD Leo where the energies are the equivalent
energy in the U band.

AD Leo KIC 5474065  KIC 9726699

Flare energy  Flare rate  Flare rate Flare rate
(erg) (d) (d) (d)

10°° 0.09 0.3

10°! 0.29 0.2 0.6

10% 1.5 8.7 117

[Ramsay et al., 201 3]

2 When the energy of flares becomes ~10 times smaller,
its frequency becomes ~10 times
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The Earth with a Magnetic Field

Thomas et al. (2007) simulated the effect of Carrington
event of the Sun on the Earth with 2-D and 3-D models.

The maximum ozone depletion
at high latitudes reaches 14%

% Change from Equilibrium

®@ & & N O
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@ Globally-averaged depletion
"B reaches only 5% and predicted

14

0 12 24 36 48 recovery time is about 4 years




