Statistical Properties of Solar White-Light Flares

Kosuke Namekata

(Kyoto Univ. Superflare Group)

K.Shibata, K.Ichimoto, A.Asai, H.Isobe,
 N.Nakamura, T.Sakaue, T.Nakamura (Kyoto Univ.),
 K.Watanabe (National Defence Academy of Japan)

1st-4th, March, 2016 Superflare Workshop (10min + 5min)

Introduction. White-Light Flare

Mechanism

White Light Flare (SDO/HMI)

2012/10/23 03:17 + 21,7500min

Introduction. This Study

"Statistical properties of solar white-light flares"

- Solar flares are well studied, because we can spatially resolve the structures of the Sun.
 - \rightarrow Apply the knowledge of solar flares to stellar superflares
 - → Only from photometric observations, we want to know more information about stellar flares

(e.g. X-ray flux, magnetic field strength, length scale,...).

- Many stellar superflares are observed as white-light flares by Kepler.
 - → Research on the properties of white-light flares is important.

<u>Contents</u>

Statistical analyses about 3 properties of solar white-light flares

1.White-Light and Soft X-ray

→The correlation of white-light Flux & GOES Soft X-ray Flux

2. Flare Duration

→The correlation of white-light flare Energy & Duration.

3. Magnetic Field Strength & Length Scale of flare region → We use the method of Shibata & Yokoyama (1999,2002)

1.1 Motivation

•We want to estimate GOES X-ray class of superflares from observation with visible bands by Kepler data.

 Shibata et al. (2013) & Maehara et al. (2015) assume (个Superflare papers)

"White-light energy is proportional to GOES X-ray class."

We need to research on the correlation of Soft X-ray flux and White-Light flux

Statistical research on 71 solar white-light flares

1.2 Results

Shibata(2013)'s assumption is approximately good.
GOES class of superflares is thought to be from X100 to X100,000!

There is also a study ... $F_{White-light} \propto F_{GOES SXR}^{0.6}$ (Kretzshmar 2010)

<u>Contents</u>

Statistical analyses about 3 properties of solar white-light flares

1. White-Light vs Soft X-ray

→The correlation of white-light Flux & GOES Soft X-ray Flux.

2. Flare Duration

 \rightarrow The correlation of white-light flare Energy & Duration.

3. Magnetic Field Strength & Length Scale of flare region → We use the method of Shibata & Yokoyama (1999,2002)

2.1 Motivation

Solar hard X-ray

: $a \sim 0.2$ (Christe et al. 2008)

Is the correlation can be seen in "solar" white-light flares?

2.1 Results

The correlation of Energy & Duration

$$\tau_{dur} = E^a$$

Solar white-light flare : a = 0.404 (This study)

Superflare WLF

Solar soft X-ray

Solar hard X-ray

: $a \sim 0.39 \pm 0.03$ (Maehara et al.2015)

100.0

: $a \sim 1/3$ (Veronig et al. 2002)

: $a \sim 0.2$ (Christe et al. 2008)

-This correlation is simply understood by the reconnection theory. $\tau_{HXR} \sim 10 - 100t_A \propto \frac{L}{v_A}$ $E \propto B^2 L^3$

 $\tau_{dur} \propto E^{1/3}$

<u>Contents</u>

Statistical analyses about 3 properties of solar white-light flares

1. White-light vs Soft X-ray

→The correlation of white-light Flux & GOES Soft X-ray Flux

2. Flare Duration

→The correlation of white-light flare Energy & Duration.

3. Magnetic Field Strength & Length scale of flare region \rightarrow We use the method of Shibata & Yokoyama (1999,2002) in terms of the application to observations of stellar flares.

3.2 Motivation

 We can get magnetic field strength & scale of flare region only by photometric observation of two X-ray wavebands.(e.g. GOES)

We statistically compare (1) with (2) to test this method

- (1) Estimated $B_{est} \& L_{est} \leftarrow \text{GOES X-ray by this method}$
- (2) Observed $B_{obs} \& L_{obs} \leftarrow SDO$

3.3 Analysis

We did rough measurements of coronal magnetic field (B_{obs}) with SDO/HMI Magnetgram & AIA 94A.

1.Flare Region is defined by AIA 94A(flare region).

2. Calculate the mean of photospheric magnetic field strength (\overline{B}) under the flare region

3. Coronal Magnetic field strength is smaller by factor 3 than \overline{B} .(Isobe et al. 2003) • $B_{obs} = \frac{1}{3}\overline{B}$

3.4 Results

Even by rough measurements, there is correlation between estimated & observed values.

3.4 Results

Previous studies also support this method. (Yamamoto et al. 2002, Akiyama 2001) **10**¹¹ This study(Loop Length) Akiyama(2001) Yamamoto et al. (2002) Estimated L [cm] 01 This method is useful, $B = 50 \left(\frac{EM[cm^{-3}]}{10^{48}}\right)^{-0.2} \left(\frac{T[K]}{10^7}\right)^{-0.6}$ $L = 10^9 \left(\frac{EM[cm^{-3}]}{10^{48}}\right)^{-0.6} \left(\frac{T[K]}{10^7}\right)^{-1}$ [G] -1.6 [cm]10⁸ 10⁹ **10¹⁰ 10**¹¹ 10⁸ Observed L [cm]

3.5 Discussion

We can apply this method to the discussion of

(1)stellar flares

(2)solar white-light flares

 \rightarrow By this method, Watanabe-san' work (2015) suggests coronal magnetic field strength of white-light flares is strong

Summary

- We found interesting correlations of white-light flares.
- We can estimate some properties of stellar superflares, using the knowledge of solar flares.
- 1. White-Light vs Soft X-ray

White-light flux is roughly proportional to GOES X-ray flux, so GOES class of superflares may be from X100 to X100,000!

2. Flare Duration

There is a similar correlation between flare energy and duration $\tau_{dur} \propto E^{1/3}$

3. Magnetic Field Strength & Length Scale of flare region We can simply estimate stellar properties, e.g.

$$B = 50 \times \left(\frac{EM}{10^{48}}\right)^{-0.2} \left(\frac{T}{10^7}\right)^{1.7}$$
 [Gauss]

Data

3.4 Discussion

Watanabe(2015) theoretically suggested coronal magnetic field strength of white-light flare is strong

↓ We confirmed observationally! from SDO/HMI & AIA

Other Analysis supports this estimation(Yamamoto2002)

in consideration of its errors. $B = 50 \left(\frac{EM[cm^{-3}]}{10^{48}}\right)^{-0.2} \left(\frac{T[K]}{10^7}\right)^{1.7} [G]$ $L = 10^9 \left(\frac{EM[cm^{-3}]}{10^{48}}\right)^{-0.6} \left(\frac{T[K]}{10^7}\right)^{-1.6} [cm]$

<u>How to estimate stellar magnetic field strength &</u> <u>scale of flare region?</u>

There is an observational evidence in this relation about solar flares, stellar flares, and protostellar flares.

 $EM \propto B^{-5}T^{17/2}$

EM & Temperature are calculated with two soft X-ray bands, so we can get magnetic field strength as...

$$B = 50 \left(\frac{EM}{10^{48}}\right)^{-0.2} \left(\frac{T}{10^6}\right)^{1.7}$$

<u>Analysis</u>

We did very rough observation with SDO HMI Magnetgram & AIA 94A on 79 flare catalogue.

We want to observe magnetic field strength of corona

The coronal magnetic field strength is smaller (by a factor 3) than global photospheric magnetic strength. (Isobe et al. 2002)

We observe global HMI Magnetgram (photospheric magnetic field strength) and regard it as coronal magnetic field strength

Results(1)

Even by rough observation, there is correlation.

Difference of L

- Yamamoto(2002) research Arcade.
- Akiyama(2001's) research flare (C-class to X class).

This method can estimate the length scale by factor 3.

$$B = 50 \left(\frac{EM}{10^{48}}\right)^{-0.2} \left(\frac{T}{10^6}\right)^{1.7} [G]$$
$$L = 10^9 \left(\frac{EM}{10^{48}}\right)^{-0.6} \left(\frac{T}{10^6}\right)^{-1.6} [cm]$$

Data Discussion(1)

We can use this method to discuss White Light Flare

We plotted 38 white-light & 40 non-white-light flares on EM vs Temperature diagram.

